Mean Diffusivity (mean + diffusivity)

Distribution by Scientific Domains


Selected Abstracts


Assessing optic nerve pathology with diffusion MRI: from mouse to human

NMR IN BIOMEDICINE, Issue 9 2008
Junqian Xu
Abstract The optic nerve is often affected in patients with glaucoma and multiple sclerosis. Conventional MRI can detect nerve damage, but it does not accurately assess the underlying pathologies. Mean diffusivity and diffusion anisotropy indices derived from diffusion tensor imaging have been shown to be sensitive to a variety of central nervous system white matter pathologies. Despite being sensitive, the lack of specificity limits the ability of these measures to differentiate the underlying pathology. Directional (axial and radial) diffusivities, measuring water diffusion parallel and perpendicular to the axonal tracts, have been shown to be specific to axonal and myelin damage in mouse models of optic nerve injury, including retinal ischemia and experimental autoimmune encephalomyelitis. The progression of Wallerian degeneration has also been detected using directional diffusivities after retinal ischemia. However, translating these findings to human optic nerve is technically challenging. The current status of diffusion MRI of human optic nerve, including imaging sequences and protocols, is summarized herein. Despite the lack of a consensus among different groups on the optimal sequence or protocol, increased mean diffusivity and decreased diffusion anisotropy have been observed in injured optic nerve from patients with chronic optic neuritis. From different mouse models of optic nerve injuries to the emerging studies on patients with optic neuritis, directional diffusivities show great potential to be specific biomarkers for axonal and myelin injury. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Introduction to diffusion tensor imaging mathematics: Part III.

CONCEPTS IN MAGNETIC RESONANCE, Issue 2 2006
Tensor calculation, noise, optimization, simulations
Abstract The mathematical aspects of diffusion tensor magnetic resonance imaging (DTMRI, or DTI), the measurement of the diffusion tensor by magnetic resonance imaging (MRI), are discussed in this three-part series. Part III begins with a comparison of different ways to calculate the tensor from diffusion-weighted imaging data. Next, the effects of noise on signal intensities and diffusion tensor measurements are discussed. In MRI signal intensities as well as DTI parameters, noise can introduce a bias (systematic deviation) as well as scatter (random deviation) in the data. Propagation-of-error formulas are explained with examples. Step-by-step procedures for simulating diffusion tensor measurements are presented. Finally, methods for selecting the optimal b factor and number of b = 0 images for measuring several properties of the diffusion tensor, including the trace (or mean diffusivity) and anisotropy, are presented. © 2006 Wiley Periodicals, Inc. Concepts Magn Reson Part A 28A: 155,179, 2006 [source]


A multiparametric evaluation of regional brain damage in patients with primary progressive multiple sclerosis

HUMAN BRAIN MAPPING, Issue 9 2009
Antonia Ceccarelli
Abstract The purpose of this study is to define the topographical distribution of gray matter (GM) and white matter (WM) damage in patients with primary progressive multiple sclerosis (PPMS), using a multiparametric MR-based approach. Using a 3 Tesla scanner, dual-echo, 3D fast-field echo (FFE), and diffusion tensor (DT) MRI scans were acquired from 18 PPMS patients and 17 matched healthy volunteers. An optimized voxel-based (VB) analysis was used to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain. In PPMS patients, GM atrophy was found in the thalami and the right insula, while mean diffusivity (MD) changes involved several cortical-subcortical structures in all cerebral lobes and the cerebellum. An overlap between decreased WM fractional anisotropy (FA) and increased WM MD was found in the corpus callosum, the cingulate gyrus, the left short temporal fibers, the right short frontal fibers, the optic radiations, and the middle cerebellar peduncles. Selective MD increase, not associated with FA decrease, was found in the internal capsules, the corticospinal tracts, the superior longitudinal fasciculi, the fronto-occipital fasciculi, and the right cerebral peduncle. A discrepancy was found between regional WM diffusivity changes and focal lesions because several areas had DT MRI abnormalities but did not harbor T2-visible lesions. Our study allowed to detect tissue damage in brain areas associated with motor and cognitive functions, which are known to be impaired in PPMS patients. Combining regional measures derived from different MR modalities may be a valuable tool to improve our understanding of PPMS pathophysiology. Hum Brain Mapp 2009. © 2009 Wiley-Liss, Inc. [source]


Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity

HUMAN BRAIN MAPPING, Issue 7 2008
Mark J. Lowe
Abstract Recent studies indicate that functional connectivity using low-frequency BOLD fluctuations (LFBFs) is reduced between the bilateral primary sensorimotor regions in multiple sclerosis. In addition, it has been shown that pathway-dependent measures of the transverse diffusivity of water in white matter correlate with related clinical measures of functional deficit in multiple sclerosis. Taken together, these methods suggest that MRI methods can be used to probe both functional connectivity and anatomic connectivity in subjects with known white matter impairment. We report the results of a study comparing anatomic connectivity of the transcallosal motor pathway, as measured with diffusion tensor imaging (DTI) and functional connectivity of the bilateral primary sensorimotor cortices (SMC), as measured with LFBFs in the resting state. High angular resolution diffusion imaging was combined with functional MRI to define the transcallosal white matter pathway connecting the bilateral primary SMC. Maps were generated from the probabilistic tracking employed and these maps were used to calculate the mean pathway diffusion measures fractional anisotropy ,FA,, mean diffusivity ,MD,, longitudinal diffusivity ,,1,, and transverse diffusivity ,,2,. These were compared with LFBF-based functional connectivity measures (Fc) obtained at rest in a cohort of 11 multiple sclerosis patients and ,10 age- and gender-matched control subjects. The correlation between ,FA, and Fc for MS patients was r = ,0.63, P < 0.04. The correlation between all subjects ,,2, and Fc was r = 0.42, P < 0.05. The correlation between all subjects ,,2, and Fc was r = ,0.50, P < 0.02. None of the control subject correlations were significant, nor were ,FA,, ,,1,, or ,MD, significantly correlated with Fc for MS patients. This constitutes the first in vivo observation of a correlation between measures of anatomic connectivity and functional connectivity using spontaneous LFBFs. Hum Brain Mapp, 2008. © 2008 Wiley-Liss, Inc. [source]


Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging

HUMAN BRAIN MAPPING, Issue 1 2008
Jessica Dubois
Abstract Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatiotemporal progression of white matter myelination. However, in vivo quantification of the maturation phases of fiber bundles is still lacking. We used noninvasive diffusion tensor MR imaging and tractography in twenty-three 1,4-month-old healthy infants to quantify the early maturation of the main cerebral fascicles. A specific maturation model, based on the respective roles of different maturational processes on the diffusion phenomena, was designed to highlight asynchronous maturation across bundles by evaluating the time-course of mean diffusivity and anisotropy changes over the considered developmental period. Using an original approach, a progression of maturation in four relative stages was determined in each tract by estimating the maturation state and speed, from the diffusion indices over the infants group compared with an adults group on one hand, and in each tract compared with the average over bundles on the other hand. Results were coherent with, and extended previous findings in 8 of 11 bundles, showing the anterior limb of the internal capsule and cingulum as the most immature, followed by the optic radiations, arcuate and inferior longitudinal fascicles, then the spinothalamic tract and fornix, and finally the corticospinal tract as the most mature bundle. Thus, this approach provides new quantitative landmarks for further noninvasive research on brain-behavior relationships during normal and abnormal development. Hum Brain Mapp, 2008. © 2007 Wiley-Liss, Inc. [source]


In vivo vascular hallmarks of diffuse leukoaraiosis

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 1 2010
Jinsoo Uh PhD
Abstract Purpose: To characterize multiple patterns of vascular changes in leukoaraiosis using in vivo magnetic resonance imaging (MRI) techniques. Materials and Methods: We measured cerebral blood flow (CBF), cerebrovascular reactivity (CVR), and blood,brain-barrier (BBB) leakage in a group of 33 elderly subjects (age: 72.3 ± 6.8 years, 17 males, 16 females). Leukoaraiosis brain regions were identified in each subject using fluid-attenuated inversion-recovery (FLAIR) MRI. Vascular parameters in the leukoaraiosis regions were compared to those in the normal-appearing white matter (NAWM) regions. Vascular changes in leukoaraiosis were also compared to structural damage as assessed by diffusion tensor imaging. Results: CBF and CVR in leukoaraiosis regions were found to be 39.7 ± 5.2% (P < 0.001) and 52.5 ± 11.6% (P = 0.005), respectively, of those in NAWM. In subjects who did not have significant leukoaraiosis, CBF and CVR in regions with high risk for leukoaraiosis showed a slight reduction compared to the other white matter regions. Significant BBB leakage was also detected (P = 0.003) in leukoaraiosis and the extent of BBB leakage was positively correlated with mean diffusivity. In addition, CVR in NAWM was lower than that in white matter of subjects without significant leukoaraiosis. Conclusion: Leukoaraiosis was characterized by reduced CBF, CVR, and a leakage in the BBB. J. Magn. Reson. Imaging 2010;32:184,190. © 2010 Wiley-Liss, Inc. [source]


Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2008
Saurabh Guleria
Abstract Diffusion tensor imaging (DTI) has the potential to reveal disruption of white matter microstructure in chronically injured spinal cords. We quantified fractional anisotropy (FA) and mean diffusivity (MD) to demonstrate retrograde Wallerian degeneration (WD) of cranial corticospinal tract (CST) in cervical spinal cord injury (SCI). Twenty-two patients with complete cervical SCI in the chronic stage were studied with DTI along with 13 healthy controls. Mean FA and MD values were computed for midbrain, pons, medulla, posterior limb of internal capsule, and corona radiata. Significant reduction in the mean FA and increase in MD was observed in the cranial CST in patients with SCI compared with controls, suggesting retrograde WD. Statistically significant inverse FA and MD changes were noted in corona radiata, indicating some restoration of spared white matter tracts. Temporal changes in the DTI metrics suggest progressing degeneration in different regions of CST. These spatiotemporal changes in DTI metrics suggest continued WD in injured fibers along with simultaneous reorganization of spared white matter fibers, which may contribute to changing neurological status in chronic SCI patients. © 2008 Wiley-Liss, Inc. [source]


Microstructural Corpus Callosum Anomalies in Children With Prenatal Alcohol Exposure: An Extension of Previous Diffusion Tensor Imaging Findings

ALCOHOLISM, Issue 10 2009
Jeffrey R. Wozniak
Background:, Several studies have now shown corpus callosum abnormalities using diffusion tensor imaging (DTI) in children with fetal alcohol spectrum disorders (FASD) in comparison with nonexposed controls. The data suggest that posterior regions of the callosum may be disproportionately affected. The current study builds on previous efforts, including our own work, and moves beyond midline corpus callosum to probe major inter-hemispheric white matter pathways with an improved DTI tractographic method. This study also expands on our prior work by evaluating a larger sample and by incorporating children with a broader range of clinical effects including full-criteria fetal alcohol syndrome (FAS). Methods:, Participants included 33 children with FASD (8 FAS, 23 partial FAS, 2 static encephalopathy) and 19 nonexposed controls between the ages of 10 and 17 years. Participants underwent DTI scans and intelligence testing. Groups (FASD vs. controls) were compared on fractional anisotropy (FA) and mean diffusivity (MD) in 6 white matter tracts projected through the corpus callosum. Exploratory analyses were also conducted examining the relationships between DTI measures in the corpus callosum and measures of intellectual functioning and facial dysmorphology. Results:, In comparison with the control group, the FASD group had significantly lower FA in 3 posterior tracts of the corpus callosum: the posterior mid-body, the isthmus, and the splenium. A trend-level finding also suggested lower FA in the genu. Measures of white matter integrity and cognition were correlated and suggest some regional specificity, in that only posterior regions of the corpus callosum were associated with visual-perceptual skills. Correlations between measures of facial dysmorphology and posterior regions of the corpus callosum were nonsignificant. Conclusions:, Consistent with previous DTI studies, these results suggest that microstructural posterior corpus callosum abnormalities are present in children with prenatal alcohol exposure and cognitive impairment. These abnormalities are clinically relevant because they are associated with cognitive deficits and appear to provide evidence of abnormalities associated with prenatal alcohol exposure independent of dysmorphic features. As such, they may yield important diagnostic and prognostic information not provided by the traditional facial characteristics. [source]


Characterization of White Matter Microstructure in Fetal Alcohol Spectrum Disorders

ALCOHOLISM, Issue 3 2009
Susanna L. Fryer
Background:, Exposure to alcohol during gestation is associated with CNS alterations, cognitive deficits, and behavior problems. This study investigated microstructural aspects of putative white matter abnormalities following prenatal alcohol exposure. Methods:, Diffusion tensor imaging was used to assess white matter microstructure in 27 youth (age range: 8 to 18 years) with (n = 15) and without (n = 12) histories of heavy prenatal alcohol exposure. Voxelwise analyses, corrected for multiple comparisons, compared fractional anisotropy (FA) and mean diffusivity (MD) between groups, throughout the cerebrum. Results:, Prenatal alcohol exposure was associated with low FA in multiple cerebral areas, including the body of the corpus callosum and white matter innervating bilateral medial frontal and occipital lobes. Fewer between-group differences in MD were observed. Conclusions:, These data provide an account of cerebral white matter microstructural integrity in fetal alcohol spectrum disorders and support extant literature showing that white matter is a target of alcohol teratogenesis. The white matter anomalies characterized in this study may relate to the neurobehavioral sequelae associated with gestational alcohol exposure, especially in areas of executive dysfunction and visual processing deficits. [source]


Cerebral oedema in minimal hepatic encephalopathy due to extrahepatic portal venous obstruction

LIVER INTERNATIONAL, Issue 8 2010
Amit Goel
Abstract Background: Minimal hepatic encephalopathy (MHE) has recently been reported in patients with extrahepatic portal venous obstruction (EHPVO). Aims: To evaluate brain changes by magnetic resonance studies in EHPVO patients. Methods: Blood ammonia level, critical flicker frequency (CFF), brain metabolites on 1H-magnetic resonance (MR) spectroscopy and brain water content on diffusion tensor imaging and magnetization transfer ratio (MTR) were studied in 31 EHPVO patients with and without MHE, as determined by neuropsychological tests. CFF and magnetic resonance imaging studies were also performed in 23 controls. Results: Fourteen patients (14/31, 45%) had MHE. Blood ammonia level was elevated in all, being significantly higher in the MHE than no MHE group. CFF was abnormal in 13% (4/31) with EHPVO and in 21% (3/14) with MHE. On 1H-MR spectroscopy, increased Glx/Cr, decreased mIns/Cr, and no change in Cho/Cr were noted in patients with MHE compared with controls. Significantly increased mean diffusivity (MD) and decreased (MTR) were observed in the MHE group, suggesting presence of interstitial cerebral oedema (ICE). MD correlated positively with blood ammonia level (r=0.65, P=0.003) and Glx (r=0.60, P=0.003). Discussion: MHE was detected in 45% of patients with EHPVO while CFF was abnormal in only 13%. ICE was present in 7/10 brain regions examined, particularly in those with MHE. Hyperammonaemia elevated cerebral Glx levels correlated well with ICE. Conclusions: MHE was common in EHPVO; CFF could identify it only in a minority. ICE was present in EHPVO, particularly in those with MHE. It correlated with blood ammonia and Glx/Cr levels. Hyperammonaemia seems to contribute to ICE in EHPVO. [source]


Evidence for enhanced functional activity of cervical cord in relapsing multiple sclerosis

MAGNETIC RESONANCE IN MEDICINE, Issue 5 2008
F. Agosta
Abstract Functional MRI (fMRI) was used to assess proprioceptive-associated cervical cord activity in 24 relapsing multiple sclerosis (MS) patients and 10 controls. Cord and brain conventional and diffusion tensor (DT) MRI were also acquired. fMRI was performed using a block design during a proprioceptive stimulation consisting of a passive flexion-extension of the right upper limb. Cord lesion number, cross-sectional area, mean diffusivity (MD) and fractional anisotropy (FA), whole brain and left corticospinal tract lesion volume (LV), gray matter (GM) MD, and normal-appearing white matter (NAWM) MD and FA were calculated. MS patients had higher average cord fMRI signal changes than controls (3.4% vs. 2.7%, P = 0.03). Compared to controls, MS patients also had a higher average signal change in the anterior section of the right cord at C5 (P = 0.005) and left cord at C5,C6 (P = 0.03), whereas no difference was found in the other cord sections. Cord average signal change correlated significantly with cord FA and brain left corticospinal tract LV, GM-MD, and NAWM-FA. This study shows an abnormal pattern of activations in the cervical cord of MS patients following proprioceptive stimulation. Cord fMRI changes might have a role in limiting the clinical consequences of MS associated with irreversible tissue damage. Magn Reson Med 59:1035,1042, 2008. © 2008 Wiley-Liss, Inc. [source]


In vivo diffusion tensor imaging of the human optic nerve: Pilot study in normal controls

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2006
C.A.M. Wheeler-Kingshott
Abstract Diffusion tensor imaging (DTI) of the optic nerve (ON) was acquired in normal controls using zonally oblique multislice (ZOOM) DTI, which excites a small field of view (FOV) using a fast sequence with a shortened EPI echo train. This combines the benefit of low sensitivity to motion (due to the single-shot acquisition used), with the additional advantage of reduced sensitivity to magnetic field susceptibility artifacts. Reducing the bright signal from the fat and cerebrospinal fluid (CSF) surrounding the nerve are key requirements for the success of the presented method. Measurements of mean diffusivity (MD) and fractional anisotropy (FA) indices were made in a coronal section of the middle portion of the optic nerve (ON) in the right (rON) and left (lON) ONs. The average values across 10 healthy volunteers were FArON = 0.64 ± 0.09 and FAlON = 0.57 ± 0.10, and MDrON = (1173 ± 227) × 10,6 mm2 s,1 and MDlON = (1266 ± 170) × 10,6 mm2 s,1. Measurements of the principal eigenvalue of the DT and its orthogonal component were also in agreement with those expected from a highly directional structural organization. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source]


Retrospective measurement of the diffusion tensor eigenvalues from diffusion anisotropy and mean diffusivity in DTI

MAGNETIC RESONANCE IN MEDICINE, Issue 1 2006
Khader M. Hasan
Abstract A simple theoretical framework to compute the eigenvalues of a cylindrically symmetric prolate diffusion tensor (D) from one of the rotationally-invariant diffusion anisotropy indices and average diffusivity is presented and validated. Cylindrical or axial symmetry assumes a prolate ellipsoid shape (,, = ,1 > ,, = (,2 + ,3)/2; ,2 = ,3). A prolate ellipsoid with such symmetry is largely satisfied in a number of white matter (WM) structures, such as the spinal cord, corpus callosum, internal capsule, and corticospinal tract. The theoretical model presented is validated using in vivo DTI measurements of rat spinal cord and human brain, where eigenvalues were calculated from both the set of diffusion coefficients and a tensor analysis. This method was used to retrospectively analyze literature data that reported tensor-derived average diffusivity, anisotropy, and eigenvalues, and similar eigenvalue measurements were obtained. The method provides a means to retrospectively reanalyze literature data that do not report eigenvalues. Other potential applications of this method are also discussed. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source]


Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease

MAGNETIC RESONANCE IN MEDICINE, Issue 6 2001
Chris A. Clark
Abstract The diffusion time dependence of the brain water diffusion tensor provides information regarding diffusion restriction and hindrance but has received little attention, primarily due to limitations in gradient amplitude available on clinical MRI systems, required to achieve short diffusion times. Using new, more powerful gradient hardware, the diffusion time dependence of tensor-derived metrics were studied in human brain in the range 8,80 ms, which encompasses the shortest diffusion times studied to date. There was no evidence for a change in mean diffusivity, fractional anisotropy, or in the eigenvalues with diffusion time in healthy human brain. The findings are consistent with a model of unrestricted, but hindered water diffusion with semipermeable membranes, likely originating from the extracellular space in which the average extracellular separation is less than 7 microns. Similar findings in two multiple sclerosis plaques indicated that the size of the water diffusion space in the lesion did not exceed this dimension. Magn Reson Med 45:1126,1129, 2001. © 2001 Wiley-Liss, Inc. [source]


Structural white matter abnormalities in patients with idiopathic dystonia

MOVEMENT DISORDERS, Issue 8 2007
Leonardo Bonilha MD
Abstract We investigated whether structural white matter abnormalities, in the form of disruption of axonal coherence and integrity as measured with diffusion tensor imaging (DTI), constitute an underlying pathological mechanism of idiopathic dystonia (ID), independent of genotype status. We studied seven subjects with ID: all had cervical dystonia as their main symptom (one patient also had spasmodic dysphonia and two patients had concurrent generalized dystonia, both DYT1-negative). We compared DTI MR images of patients with 10 controls, evaluating differences in mean diffusivity (MD) and fractional anisotropy (FA). ID was associated with increased FA values in the thalamus and adjacent white matter, and in the white matter underlying the middle frontal gyrus. ID was also associated with increase in MD in adjacent white matter to the pallidum and putamen bilaterally, left caudate, and in subcortical hemispheric regions, including the postcentral gyrus. Abnormal FA and MD in patients with ID indicate that abnormal axonal coherence and integrity contribute to the pathophysiology of dystonia. These findings suggest that ID is not only a functional disorder, but also associated with structural brain changes. Impaired connectivity and disrupted flow of information may contribute to the impairment of motor planning and regulation in dystonia. © 2006 Movement Disorder Society [source]


Assessing optic nerve pathology with diffusion MRI: from mouse to human

NMR IN BIOMEDICINE, Issue 9 2008
Junqian Xu
Abstract The optic nerve is often affected in patients with glaucoma and multiple sclerosis. Conventional MRI can detect nerve damage, but it does not accurately assess the underlying pathologies. Mean diffusivity and diffusion anisotropy indices derived from diffusion tensor imaging have been shown to be sensitive to a variety of central nervous system white matter pathologies. Despite being sensitive, the lack of specificity limits the ability of these measures to differentiate the underlying pathology. Directional (axial and radial) diffusivities, measuring water diffusion parallel and perpendicular to the axonal tracts, have been shown to be specific to axonal and myelin damage in mouse models of optic nerve injury, including retinal ischemia and experimental autoimmune encephalomyelitis. The progression of Wallerian degeneration has also been detected using directional diffusivities after retinal ischemia. However, translating these findings to human optic nerve is technically challenging. The current status of diffusion MRI of human optic nerve, including imaging sequences and protocols, is summarized herein. Despite the lack of a consensus among different groups on the optimal sequence or protocol, increased mean diffusivity and decreased diffusion anisotropy have been observed in injured optic nerve from patients with chronic optic neuritis. From different mouse models of optic nerve injuries to the emerging studies on patients with optic neuritis, directional diffusivities show great potential to be specific biomarkers for axonal and myelin injury. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Diffusion tensor MRI in rat models of invasive and well-demarcated brain tumors

NMR IN BIOMEDICINE, Issue 3 2008
Sungheon Kim
Abstract Diffusion tensor imaging (DTI) and its metrics, such as mean diffusivity (MD) and fractional anisotropy (FA), have been used to detect the extent of brain tumors and understand tumor growth and its influence on the surrounding tissue. However, there are conflicting reports on how DTI metrics can be used for tumor diagnosis. The physiological interpretation of these metrics in terms of tumor growth is also not clear. The objective of this study was to investigate the DTI parameters in two rat brain tumor models (9L and F98) with different patterns of aggressiveness by longitudinal monitoring of tumor growth and comparing the DTI parameters of these two tumor models. In addition to the standard DTI metrics, MD and FA, we measured other metrics representing diffusion tensor shape, such as linear and planar anisotropy coefficients (CL and CP), and orientational coherence measured by lattice index (LI), to characterize the two tumor models. The 9L tumor had higher FA, CL, and LI than the F98 tumor. F98 had a larger difference in anisotropies between tumor and peritumor regions than 9L. From the eigenvalues, it was found that the increase in CL and trace of the 9L tumor was due to an increase in the primary eigenvalue, whereas the increase in CP in the peritumor region was due to an increase in both primary and secondary eigenvalues and a decrease in tertiary eigenvalue. Our results indicate that shape-oriented anisotropy measures, such as CL and CP, and orientational coherence measures, such as LI, can provide useful information in differentiating these two tumor models and also differentiating tumor from peritumoral regions. Copyright © 2007 John Wiley & Sons, Ltd. [source]


White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging study

BIPOLAR DISORDERS, Issue 4 2008
Stefania Bruno
Objectives:, In bipolar disorder (BD), dysregulation of mood may result from white matter abnormalities that disrupt fronto-subcortical circuits. In this study, we explore such abnormalities using diffusion tensor imaging (DTI), an imaging technique capable of detecting subtle changes not visible with conventional magnetic resonance imaging (MRI), and voxel-based analysis. Methods:, Thirty-six patients with BD, all but two receiving antidepressants or mood stabilizers, and 28 healthy controls matched for age and gender were studied. Diffusion-weighted echoplanar images (DW-EPI) were obtained using a 1.5T scanner. Voxel-based analysis was performed using SPM 2. Differences between the groups in mean diffusivity and fractional anisotropy (FA) were explored. Results:, In the patient group, mean diffusivity was increased in the right posterior frontal and bilateral prefrontal white matter, while FA was increased in the inferior, middle temporal and middle occipital regions. The areas of increased mean diffusivity overlapped with those previously found to be abnormal using volumetric MRI and magnetization transfer imaging (MTI) in the same group of patients. Conclusions:, White matter abnormalities, predominantly in the fronto-temporal regions, can be detected in patients with BD using DTI. The neuropathology of these abnormalities is uncertain, but neuronal and axonal loss, myelin abnormalities and alterations in axonal packing density are likely to be relevant. The neuroprotective effects of some antidepressants and mood stabilizers make it unlikely that medication effects could explain the abnormalities described here, although minor effects cannot be excluded. [source]