Mean Annual Temperature (mean + annual_temperature)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Neophyte species richness at the landscape scale under urban sprawl and climate warming

DIVERSITY AND DISTRIBUTIONS, Issue 6 2009
Michael P. Nobis
Abstract Aim, Land use and climate are two major components of global environmental change but our understanding of their simultaneous and interactive effects upon biodiversity is still limited. Here, we investigated the relationship between the species richness of neophytes, i.e. non-native vascular plants introduced after 1500 AD, and environmental covariates to draw implications for future dynamics under land-use and climate change. Location, Switzerland, Central Europe. Methods, The distribution of vascular plants was derived from a systematic national grid of 1 km2 quadrates (n = 456; Swiss Biodiversity Monitoring programme) including 1761 species, 122 of which were neophytes. Generalized linear models (GLMs) were used to correlate neophyte species richness with environmental covariates. The impact of land-use and climate change was thereafter evaluated by projections for the years 2020 and 2050 using scenarios of moderate and strong changes for climate warming (IPCC) and urban sprawl (NRP 54). Results, Mean annual temperature and the amount of urban areas explained neophyte species richness best, with a high predictive power of the corresponding model (cross-validated D2 = 0.816). Climate warming had a stronger impact on the potential increase in the mean neophyte species richness (up to 191% increase by 2050) than ongoing urban sprawl (up to 10% increase) independently from variable interactions and model extrapolations to non-analogue environments. Main conclusions, In contrast to other vascular plants, the prediction of neophyte species richness at the landscape scale in Switzerland requires few variables only, and regions of highest species richness of the two groups do not coincide. The neophyte species richness is basically driven by climatic (temperature) conditions, and urban areas additionally modulate small-scale differences upon this coarse-scale pattern. According to the projections climate warming will contribute to the future increase in neophyte species richness much more than ongoing urbanization, but the gain in new neophyte species will be highest in urban regions. [source]


Ecological distribution of terrestrial orchids in a south Brazilian Atlantic region

NORDIC JOURNAL OF BOTANY, Issue 1 2010
Fernando Souza Rocha
Terrestrial orchids comprise a taxonomically and ecologically varied group, ranging from tropical to subpolar regions and from wet marshy to dry sand-dune environments. An ecological survey of these plants was performed in a natural region of Rio Grande do Sul, south Brazil, namely the northern coastal plain, between the abrupt slopes of the Serra Geral and the coastal line of the Atlantic Ocean (29°01,S to 30°00,S, 49°43,W to 50°16,W). The study area presents a humid subtropical climate of the Cfa type. Mean annual temperature and precipitation range from 17.5 to 20.0°C and from 1200 to 1700,mm, respectively. The occurrence of indigenous terrestrial orchid species was recorded for six major habitats or vegetation types: bogs and marshes, peat forests, rain forests, dune forests, Butia -palm stands and coastal sand-dunes. The ecological range was defined for 39 species belonging to 23 genera, based on literature, herbarium revisions and extensive collecting along the studied area. Species richness ranged from nine species, in both coastal dunes and palm-groves, to 17 species in peat forests. A negative correlation was observed between species richness and ecological range, showing a general tendency for terrestrial orchids to be confined to one or a few habitats. Multivariate analyses indicated light (herbaceous vs woody vegetation) as a primary ecological factor, and soil drainage (sandy vs peaty substrates) as a secondary factor controlling terrestrial orchid distribution. [source]


On the climate and weather of mountain and sub-arctic lakes in Europe and their susceptibility to future climate change

FRESHWATER BIOLOGY, Issue 12 2009
R. THOMPSON
Summary 1.,The complex terrain and heterogeneous nature of the mountain environment coupled with remoteness from major centres of human activity makes mountains challenging locations for meteorological investigations. Mountainous areas tend to have more varied and more extreme weather than lowlands. 2.,The EMERGE program has the primary aim of assessing the status of remote mountain and sub-arctic lakes throughout Europe for the first time. In this study, we describe the main features of the climate, ice-cover durations and recent temperature trends of these areas. The main weather characteristics of European mountain and sub-arctic lakes are their cold temperatures and year-round precipitation. Mean annual temperatures are generally close to 0 °C, and maximum summer temperatures reasonably close to 10 °C. 3.,Maritime versus continental settings determine the main differences in annual-temperature range among lake districts (10.5 °C in Scotland to 26.7 °C in Northern Finland), and a similar factor for ice-cover duration. Radiation ranges from low (120 W m,2) in the high latitude sub-arctic and high (237 W m,2) in the southern ranges of the Pyrenees and Rila. Similarly, precipitation is high in the main Alpine chain (250 cm year,1 in the Central Southern Alps) and low in the continental sub-arctic (65 cm year,1 in Northern Finland). 4.,The main temporal patterns in air temperature follow those of the adjacent lowlands. All the lake districts warmed during the last century. Spring temperature trends were highest in Finland; summer trends were weak everywhere; autumn trends were strongest in the west, in the Pyrenees and western Alps; while winter trends varied markedly, being high in the Pyrenees and Alps, low in Scotland and Norway and negative in Finland. 5.,Two new, limnological case studies on Lake Redon, in the Pyrenees, highlight the sensitivity of remote lakes to projected changes in the global climate. These two case studies involve close linkages between extreme chemical-precipitation events and synoptic wind-patterns, and between thermocline behaviour and features of the large-scale circulation. 6.,Individual lakes can be ultra-responsive to climate change. Even modest changes in future air temperatures will lead to major changes in lake temperatures and ice-cover duration and hence probably affect their ecological status. [source]


Rapid morphological change in stream beetle museum specimens correlates with climate change

ECOLOGICAL ENTOMOLOGY, Issue 5 2008
JENNIFER BABIN-FENSKE
Abstract 1.,Climate change has been occurring at unprecedented rates and its impacts on biological populations is beginning to be well documented in the literature. For many species, however, long-term records are not available, and trends have not been documented. 2.,Using museum specimens from southern USA, we show that the stream-dwelling beetle Gyretes sinuatus has shown an 8% increase in body size and change in body shape (fineness ratio) from 1928 to 1988. Any directional morphological change observed over time could be an indicator of a microevolutionary response. 3.,During these 60 years, there have also been changes in temperature, precipitation, and location of collection sites. Unlike the global trend, mean annual temperature in the region has decreased, and furthermore, total annual precipitation has increased. By investigating how these various ecological and geographical variables may affect body size and shape, we can examine which pressures may promote larger and/or thinner beetles. 4.,Results indicate that mean annual temperature was the most predictive variable for the change in size and shape. We suggest there is an adaptive role for temperature on body size and shape of stream dwelling organisms. 5.,We found that museum specimens can be invaluable resources of information when collection date and location information is available. We promote the use of such specimens for future studies of the morphological response to climate change. [source]


Is natural selection a plausible explanation for the distribution of Idh- 1 alleles in the cricket Allonemobius socius?

ECOLOGICAL ENTOMOLOGY, Issue 1 2006
Diana L. Huestis
Abstract., 1.,Allozyme alleles in natural populations have been proposed as either neutral markers of genetic diversity or the product of natural selection on enzyme function, as amino acid substitutions that change electrophoretic mobility may also alter enzyme performance. To address these possibilities, researchers have used both correlative analyses and empirical studies. 2.,Here, geographically structured variation of the enzyme isocitrate dehydrogenase (Idh- 1) in the striped ground cricket Allonemobius socius Scudder (Orthoptera: Gryllidae) is examined. The distributions of Idh- 1 alleles appear to be related to environmental gradients, as allele frequencies showed significant relationships with mean annual temperature and precipitation. Specifically, the slowest mobility allele was more frequent at colder temperatures, while the converse occurred for the fastest mobility allele. 3.,An exploratory experiment was performed to examine fitness effects of possessing different Idh- 1 alleles at two temperatures to test the hypothesis that the geographic structure of this locus may reflect environmental adaptation. Results showed that a significant interaction between temperature and Idh- 1 genotype affected the number of eggs laid, with success of homozygous individuals matching environmental expectations. 4.,The above results show that (1) variation in the frequency of Idh- 1 alleles is significantly related to environmental gradients in the eastern U.S.A. and (2) alternative alleles of Idh- 1 appear to influence the egg-laying ability of individuals differently depending on environmental temperature. Together, these results suggest that natural selection is a plausible mechanism underlying the distribution of Idh- 1 alleles in this species, although more detailed studies are needed. [source]


Changes to the elevational limits and extent of species ranges associated with climate change

ECOLOGY LETTERS, Issue 11 2005
Robert J. Wilson
Abstract The first expected symptoms of a climate change-generated biodiversity crisis are range contractions and extinctions at lower elevational and latitudinal limits to species distributions. However, whilst range expansions at high elevations and latitudes have been widely documented, there has been surprisingly little evidence for contractions at warm margins. We show that lower elevational limits for 16 butterfly species in central Spain have risen on average by 212 m (± SE 60) in 30 years, accompanying a 1.3 °C rise (equivalent to c. 225 m) in mean annual temperature. These elevational shifts signify an average reduction in habitable area by one-third, with losses of 50,80% projected for the coming century, given maintenance of the species thermal associations. The results suggest that many species have already suffered climate-mediated habitat losses that may threaten their long-term chances of survival. [source]


Possible effects of habitat fragmentation and climate change on the range of forest plant species

ECOLOGY LETTERS, Issue 4 2002
Olivier Honnay
Global circulation models predict an increase in mean annual temperature between 2.1 and 4.6 °C by 2080 in the northern temperate zone. The associated changes in the ratio of extinctions and colonizations at the boundaries of species ranges are expected to result in northward range shifts for a lot of species. However, net species colonization at northern boundary ranges, necessary for a northward shift and for range conservation, may be hampered because of habitat fragmentation. We report the results of two forest plant colonization studies in two fragmented landscapes in central Belgium. Almost all forest plant species (85%) had an extremely low success of colonizing spatially segregated new suitable forest habitats after c. 40 years. In a landscape with higher forest connectivity, colonization success was higher but still insufficient to ensure large-scale colonization. Under the hypothesis of net extinction at southern range boundaries, forest plant species dispersal limitation will prevent net colonization at northern range boundaries required for range conservation. [source]


Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China's hot and cold hyperarid deserts

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2007
Stephen B. Pointing
Summary Hypolithic cyanobacterial communities occur in hot and cold hyperarid environments but the physical factors determining their diversity are not well understood. Here we report hypolithic diversity and colonization of a common quartz substrate at several hyperarid locations in the ancient deserts of north-western China, that experience varying mean annual temperature, rainfall and concomitant availability of liquid water in soil. Microscopy and enrichment culture resulted only in Chroococcidiopsis morphotypes which were ubiquitous, but community phylogenetic analysis revealed considerable cyanobacterial and heterotrophic bacterial diversity. Species Richness and Shannon's Diversity Index displayed a significant positive linear correlation with availability of liquid water but not temperature or rainfall alone. Several taxonomic groups occurred only in specific climatically defined locations, while for Chroococcidiopsis, Deinococcus and Phormidium location specific lineages within these genera were also evident. Multivariate analysis was used to illustrate pronounced community shifts due to liquid water availability, although these did not significantly affect the predicted functional relationships within any given assemblage in either hot or cold, wet or dry hyperarid deserts. This study clearly demonstrates that availability of liquid water, rather than temperature or rainfall per se is the key determinant of hypolithic diversity in hyperarid locations, and furthermore that functionally similar yet taxonomically distinct communities occur, characterized by the presence of taxa that are specific to defined levels of aridity. [source]


Dichlorodiphenyltrichloroethane in the aquatic ecosystem of the Okavango Delta, Botswana, South Africa

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2003
Bontle Mbongwe
Abstract Concentrations of DDT and its metabolites were measured in water, plants, invertebrates, and fish from lagoons in the Okavango Delta, Botswana (Africa), where DDT has been used for approximately 50 years. The sampling area was sectioned to distinguish spraying for malaria and for African sleeping sickness. Average concentrations of total DDT (sum of DDT and its metabolites) in the Okavango ranged from 0.009 ng/L in water to 18.76 ng/g wet weight in fish. These levels are approximately 1% of those found in piscivorous fish from temperate North America. The dichlorodiphenyl ethylene (DDE) metabolite was the most abundant fraction of total DDT. Although total DDT concentrations were higher in areas treated for malaria than areas treated for sleeping sickness, these concentrations were likely driven by factors other than the historic application of the pesticide. Equilibration with air concentrations is the most likely explanation for these levels. Since the mean annual temperature exceeds the temperature of vaporization of DDT, this research points to the need for reliable transport models. Our results showed that total DDT concentration in fish was best explained by lipid content of the fish and trophic position inferred by ,15N, regardless of DDT application history in those areas. The reservoir above Gaborone Dam, an area downstream of the Okavango but where DDT had not been used, was sampled to compare total DDT levels to the treated areas. The two species (a herbivorous threespot talapia and the omnivorous sharptooth catfish) from Gaborone had levels higher than those found in the Okavango Delta, but these differences can again be explained using trophic position inferred by ,15N rather than by fish size or location. [source]


Variation in abundance of Norwegian spring-spawning herring (Clupea harengus, Clupeidae) throughout the 20th century and the influence of climatic fluctuations

FISH AND FISHERIES, Issue 3 2000
R. Toresen
A long-term (1907,98) virtual population analysis (VPA) was made for Norwegian spring-spawning herring (NSSH), which is a huge pelagic fish stock in the north-east Atlantic. It shows that this herring stock has had large fluctuations during the last century; these fluctuations have mainly been determined by variations in the temperature of the inflowing water masses to the region. The spawning stock biomass (SSB) increased from a rather low level in the early years of this century and reached a high level of around 14 million tons by 1930. The spawning stock biomass then decreased to a level of around 10 million tons by 1940, but increased again to a record high level of 16 million tons by 1945. The stock then started to decrease and during the next 20-year period fell to a level of less than 50 000 tons by the late 1960s. Through the 1970s and 1980s, the stock slowly recovered and after the recruitment of strong year classes in 1983 and 1990,1992 the stock recovered to a spawning stock biomass of about 10 million tons. The long-term fluctuation in spawning stock biomass is caused by variations in the survival of recruits. It is found that the long-term changes in spawning stock abundance are highly correlated with the long-term variations in the mean annual temperature of the inflowing Atlantic water masses (through the Kola section) into the north-east Atlantic region. The recruitment is positively correlated with the average temperature in the Kola section in the winter months, January,April, which indicates that environmental factors govern the large-scale fluctuations in production for this herring stock. [source]


Recent decay of a single palsa in relation to weather conditions between 1996 and 2000 in Laivadalen, northern Sweden

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2 2002
Frieda Sjoukje Zuidhoff
This study presents the decay of a small palsa complex between 1996 and 2000 in Sweden's southernmost major palsa bog. The outline of the palsa was mapped during three summers in 1996, 1999 and 2000 and an automatic weather station measured air temperature, precipitation, snow depth, wind speed and wind direction between 1997 and 2000. The decay of the palsa was enormous in the dome,shaped part of the palsa complex: the height decreased during the observation period from 2.3 m to 0.5 m. In 2000, the palsa dome had almost totally disappeared: only some peat blocks in a palsa pond were left. The decay of the palsa was complex with a number of degradational processes, of which the main processes were block erosion, thermokarst and wind erosion. Thermal melting has occurred along the edges of the palsa and possibly below the frozen core of the palsa since 1998/99. Wind erosion was observed during summer and the maximum estimated deflation was 80 cm. The decay of the palsa dome was especially large between 1999 and 2000, probably due to a high mean annual temperature, high summer precipitation and the warming influence of the large pond surrounding the palsa. The present climate in the palsa bog with a mean annual temperature of ,0.8°C is not favourable for palsa development and maintenance, despite a strong wind regime which can provide suitable conditions for snowdrift. [source]


Soil inorganic carbon storage pattern in China

GLOBAL CHANGE BIOLOGY, Issue 10 2008
NA MI
Abstract Soils with pedogenic carbonate cover about 30% (3.44 × 106 km2) of China, mainly across its arid and semiarid regions in the Northwest. Based on the second national soil survey (1979,1992), total soil inorganic carbon (SIC) storage in China was estimated to be 53.3±6.3 PgC (1 Pg=1015 g) to the depth investigated to 2 m. Soil inorganic carbon storages were 4.6, 10.6, 11.1, and 20.8 Pg for the depth ranges of 0,0.1, 0.1,0.3, 0.3,0.5, and 0.5,1 m, respectively. Stocks for 0.1, 0.3, 0.5, and 1 m of depth accounted for 8.7%, 28.7%, 49.6%, and 88.9% of total SIC, respectively. In contrast with soil organic carbon (SOC) storage, which is highest under 500,800 mm yr,1 of mean precipitation, SIC storage peaks where mean precipitation is <400 mm yr,1. The amount and vertical distribution of SIC was related to climate and land cover type. Content of SIC in each incremental horizon was positively related with mean annual temperature and negatively related with mean annual precipitation, with the magnitude of SIC content across land cover types showing the following order: desert, grassland >shrubland, cropland >marsh, forest, meadow. Densities of SIC increased generally with depth in all ecosystem types with the exception of deserts and marshes where it peaked in intermediate layers (0.1,0.3 m for first and 0.3,0.5 m for latter). Being an abundant component of soil carbon stocks in China, SIC dynamics and the process involved in its accumulation or loss from soils require a better understanding. [source]


Storage, patterns and controls of soil organic carbon in the Tibetan grasslands

GLOBAL CHANGE BIOLOGY, Issue 7 2008
YUANHE YANG
Abstract The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001,2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1 m in the alpine grasslands was estimated at 7.4 Pg C (1 Pg=1015 g), with an average density of 6.5 kg m,2. The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands. [source]


Use of response functions in selecting lodgepole pine populations for future climates

GLOBAL CHANGE BIOLOGY, Issue 12 2006
T. WANG
Abstract Although growth response functions have previously been developed for lodgepole pine (Pinus contorta Dougl. ex Loud.) populations in British Columbia, new analyses were conducted: (1) to demonstrate the merit of a new local climate model in genecological analysis; (2) to highlight new methods for deriving response functions; and (3) to evaluate the impacts of management options for existing geographically defined seed planning units (SPUs) for reforestation. Results of this study suggest that new methods for anchoring population response functions, and a multivariate approach for incorporating climate variables into a single model, considerably improve the reliability of these functions. These functions identified a small number of populations in central areas of the species distribution with greater growth potential over a wide range of mean annual temperature (MAT). Average productivity of lodgepole pine is predicted to increase (up to 7%) if moderate warming (,2°C MAT) occurs in the next few decades as predicted, although productivity would substantially decline in some SPUs in southern BC. Severe global warming (>3°C MAT) would result in either a drastic decline in productivity or local populations being extirpated in southern SPUs. New deployment strategies using the best seed sources for future reforestation may not only be able to mitigate the negative impact of global warming, but may even be able to increase productivity in some areas. [source]


Land-use impact on ecosystem functioning in eastern Colorado, USA

GLOBAL CHANGE BIOLOGY, Issue 6 2001
J. M. Paruelo
Abstract Land-cover change associated with agriculture has had an enormous effect on the structure and functioning of temperate ecosystems. However, the empirical evidence for the impact of land use on ecosystem functioning at the regional scale is scarce. Most of our knowledge on land-use impact has been derived from simulation studies or from small plot experiments. In this article we studied the effects of land use on (i) the seasonal dynamics and (ii) the interannual variability of the Normalized Difference Vegetation Index (NDVI), a variable linearly related to the fraction of the photosynthetically active radiation (PAR) intercepted by the canopy. We also analysed the relative importance of environmental factors and land use on the spatial patterns of NDVI. We compared three cultivated land-cover types against native grasslands. The seasonal dynamics of NDVI was used as a descriptor of ecosystem functioning. In order to reduce the dimensionality of our data we analysed the annual integral (NDVI-I), the date of maximum NDVI (DMAX) and the quarterly average NDVI. These attributes were studied for 7 years and for 346 sites distributed across eastern Colorado (USA). Land use did modify ecosystem functioning at the regional level in eastern Colorado. The seasonal dynamics of NDVI, a surrogate for the fraction of PAR intercepted by the canopy, were significantly altered by agricultural practices. Land use modified both the NDVI integral and the seasonal dynamics of this spectral index. Despite the variability within land-cover categories, land use was the most important factor in explaining regional differences of the NDVI attributes analysed. Within the range of environmental conditions found in eastern Colorado, land use was more important than mean annual precipitation, mean annual temperature and soil texture in determining the seasonal dynamics of NDVI. [source]


Large-scale pattern of biomass partitioning across China's grasslands

GLOBAL ECOLOGY, Issue 2 2010
Yuanhe Yang
ABSTRACT Aim, To investigate large-scale patterns of above-ground and below-ground biomass partitioning in grassland ecosystems and to test the isometric theory at the community level. Location, Northern China, in diverse grassland types spanning temperate grasslands in arid and semi-arid regions to alpine grasslands on the Tibetan Plateau. Methods, We investigated above-ground and below-ground biomass in China's grasslands by conducting five consecutive sampling campaigns across the northern part of the country during 2001,05. We then documented the root : shoot ratio (R/S) and its relationship with climatic factors for China's grasslands. We further explored relationships between above-ground and below-ground biomass across different grassland types. Results, Our results indicated that the overall R/S of China's grasslands was larger than the global average (6.3 vs. 3.7). The R/S for China's grasslands did not show any significant trend with either mean annual temperature or mean annual precipitation. Above-ground biomass was nearly proportional to below-ground biomass with a scaling exponent (the slope of log,log linear relationship between above-ground and below-ground biomass) of 1.02 across various grassland types. The slope did not differ significantly between temperate and alpine grasslands or between steppe and meadow. Main conclusions, Our findings support the isometric theory of above-ground and below-ground biomass partitioning, and suggest that above-ground biomass scales isometrically with below-ground biomass at the community level. [source]


Combining spatial and phylogenetic eigenvector filtering in trait analysis

GLOBAL ECOLOGY, Issue 6 2009
Ingolf Kühn
ABSTRACT Aim, To analyse the effects of simultaneously using spatial and phylogenetic information in removing spatial autocorrelation of residuals within a multiple regression framework of trait analysis. Location, Switzerland, Europe. Methods, We used an eigenvector filtering approach to analyse the relationship between spatial distribution of a trait (flowering phenology) and environmental covariates in a multiple regression framework. Eigenvector filters were calculated from ordinations of distance matrices. Distance matrices were either based on pure spatial information, pure phylogenetic information or spatially structured phylogenetic information. In the multiple regression, those filters were selected which best reduced Moran's I coefficient of residual autocorrelation. These were added as covariates to a regression model of environmental variables explaining trait distribution. Results, The simultaneous provision of spatial and phylogenetic information was effectively able to remove residual autocorrelation in the analysis. Adding phylogenetic information was superior to adding purely spatial information. Applying filters showed altered results, i.e. different environmental predictors were seen to be significant. Nevertheless, mean annual temperature and calcareous substrate remained the most important predictors to explain the onset of flowering in Switzerland; namely, the warmer the temperature and the more calcareous the substrate, the earlier the onset of flowering. A sequential approach, i.e. first removing the phylogenetic signal from traits and then applying a spatial analysis, did not provide more information or yield less autocorrelation than simple or purely spatial models. Main conclusions, The combination of spatial and spatio-phylogenetic information is recommended in the analysis of trait distribution data in a multiple regression framework. This approach is an efficient means for reducing residual autocorrelation and for testing the robustness of results, including the indication of incomplete parameterizations, and can facilitate ecological interpretation. [source]


Global trends in senesced-leaf nitrogen and phosphorus

GLOBAL ECOLOGY, Issue 5 2009
Zhiyou Yuan
ABSTRACT Aim, Senesced-leaf litter plays an important role in the functioning of terrestrial ecosystems. While green-leaf nutrients have been reported to be affected by climatic factors at the global scale, the global patterns of senesced-leaf nutrients are not well understood. Location, Global. Methods, Here, bringing together a global dataset of senesced-leaf N and P spanning 1253 observations and 638 plant species at 365 sites and of associated mean climatic indices, we describe the world-wide trends in senesced-leaf N and P and their stoichiometric ratios. Results, Concentration of senesced-leaf N was highest in tropical forests, intermediate in boreal, temperate, and mediterranean forests and grasslands, and lowest in tundra, whereas P concentration was highest in grasslands, lowest in tropical forests and intermediate in other ecosystems. Tropical forests had the highest N : P and C : P ratios in senesced leaves. When all data were pooled, N concentration significantly increased, but senesced-leaf P concentration decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). The N : P and C : P ratios also increased with MAT and MAP, but C : N ratios decreased. Plant functional type (PFT), i.e. life-form (grass, herb, shrub or tree), phylogeny (angiosperm versus gymnosperm) and leaf habit (deciduous versus evergreen), affected senesced-leaf N, P, N : P, C : N and C : P with a ranking of senesced-leaf N from high to low: forbs , shrubs , trees > grasses, while the ranking of P was forbs , shrubs , trees < grasses. The climatic trends of senesced-leaf N and P and their stoichiometric ratios were similar between PFTs. Main conclusions, Globally, senesced-leaf N and P concentrations differed among ecosystem types, from tropical forest to tundra. Differences were significantly related to global climate variables such as MAT and MAP and also related to plant functional types. These results at the global scale suggest that nutrient feedback to soil through leaf senescence depends on both the climatic conditions and the plant composition of an ecosystem. [source]


Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation

GLOBAL ECOLOGY, Issue 1 2009
Z. Y. Yuan
ABSTRACT Aim Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in plants, but the patterns of nutrient resorption at the global scale are unknown. Because soil nutrients vary along climatic gradients, we hypothesize that nutrient resorption changes with latitude, temperature and precipitation. Location Global. Methods We conducted a meta-analysis on a global data set collected from published literature on nitrogen (N) and phosphorus (P) resorption of woody plants. Results For all data pooled, both N resorption efficiency (NRE) and P resorption efficiency (PRE) were significantly related to latitude, mean annual temperature (MAT) and mean annual precipitation (MAP): NRE increased with latitude but decreased with MAT and MAP. In contrast, PRE decreased with latitude but increased with MAT and MAP. When functional groups (shrub versus tree, coniferous versus broadleaf and evergreen versus deciduous) were examined individually, the patterns of NRE and PRE in relation to latitude, MAT and MAP were generally similar. Main conclusions The relationships between N and P resorption and latitude, MAT and MAP indicate the existence of geographical patterns of plant nutrient conservation strategies in relation to temperature and precipitation at the global scale, particularly for PRE, which can be an indicator for P limitation in the tropics and selective pressure shaping the evolution of plant traits. Our results suggest that, although the magnitude of plant nutrient resorption might be regulated by local factors such as substrate, spatial patterns are also controlled by temperature or precipitation. [source]


The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America

GLOBAL ECOLOGY, Issue 1 2009
Hong Qian
ABSTRACT Aim Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location North America north of Mexico. Methods The study area was divided into 313 equal-area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (lnJ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of lnJ in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in lnJ into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of lnJ in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in lnJ than distance, climate or topography does separately. Main conclusions The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template. [source]


Trends in extreme daily rainfall across the South Pacific and relationship to the South Pacific Convergence Zone

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 8 2003
G. M. Griffiths
Abstract Daily rainfall records from 22 high-quality stations located in the South Pacific were analysed, over the common period 1961,2000, in order to assess whether extreme rainfall events have altered in their frequency or magnitude. A comprehensive spatial coverage across the South Pacific was provided, analysing a range of indices of extreme precipitation, which reflect both high rainfall events and drought. Clear spatial patterns emerged in the trends of extreme rainfall indices, with a major discontinuity across the diagonal section of the South Pacific Convergence Zone (SPCZ). Stations located between 180 and 155°W exhibit a greater number of significant abrupt changes in extreme climate than elsewhere in the South Pacific, and the majority of climatic jumps occur in the 1970s or 1980s (coincident with a displacement northeastward of the diagonal part of the SPCZ and a large local increase in mean annual temperature). Notably, all significant abrupt changes in an extreme rainfall intensity index occurred in the late 1970s or early 1980s, and in every case the index showed an increase in extremity following the change point, regardless of station location. For the stations located south of the SPCZ, this may also be linked to the observed warming since the 1970s. Significant abrupt changes in mean precipitation were also identified around the mid 1940s, for two longer, century-scale records, which again correspond to a major displacement of the diagonal section of the SPCZ. An indicator of the diagonal SPCZ position is significantly temporally correlated with an extreme rainfall intensity index, at two locations either side of the diagonal section of the SPCZ, at decadal time scales or longer. This suggests that the displacement of the diagonal portion of the SPCZ on decadal time scales influences not only mean precipitation, but also daily rainfall extremes. Copyright © 2003 Royal Meteorological Society [source]


Nitrogen biomarkers and their fate in soil,

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2003
Wulf Amelung
Abstract More than 90,% of the nitrogen (N) in soils can be organically bound, but the mechanisms and rates by which it is cycled have eluded researchers. The objective of this research was to contribute to a better understanding of the origin and transformation of soil organic N (SON) by using amino sugars and the enantiomers of amino acids as markers for microbial residues and/or aging processes. Studied samples presented here comprised (1) soil transects across different climates, (2) arable soils with different duration of cropping, and (3) radiocarbon-dated soil profiles. The results suggested that increased microbial alteration of SON temporarily results in a sequestration of N in microbial residues, which are mineralized at later stages of SON decomposition. Microorganisms increasingly sequestered N within intact cell wall residues as frost periods shortened. At a mean annual temperature above 12,15,°C, these residues were mineralized, probably due to limitations in additional substrates. Breaking the grassland for cropping caused rapid SON losses. Microbial residues were decomposed in preference to total N, this effect being enhanced at higher temperatures. Hence, climate and cultivation interactively affected SON dynamics. Nevertheless, not all SON was available to soil microorganisms. In soil profiles, L-aspartic acid and L-lysine slowly converted into their D-form, for lysine even at a similar rate in soils of different microbial activity. Formation of D-aspartate with time was, therefore, induced by microorganisms while that of D-lysine was not. The racemization of the two amino acids indicates that SON not available to microorganisms ages biotically and abiotically. In native soils, the latter is conserved for centuries, despite N deficiency frequently occurring in living terrestrial environments. Climate was not found to affect the fate of old protein constituents in surface soil. When native grassland was broken for cropping, however, old SON constituents had become available to microorganisms and were degraded. Stickstoff-Biomarker und ihre Dynamik im Boden Über 90,% des Stickstoffs im Boden können organisch gebunden sein. Um zu einem besseren Verständnis der Norg -Dynamik im Boden beitragen zu können, analysierte ich Aminozucker und Aminosäure-Enantiomere als Marker für mikrobielle N-Rückstände und/oder Alterungsprozesse von Norg im Boden. Das hier vorgestellte Untersuchungsmaterial umfasste (1) Bodentransekte entlang unterschiedlicher Klimate, (2) Ackerböden mit verschiedener Nutzungsdauer und (3) 14C-datierte Bodenprofile. Die Ergebnisse zeigten, dass mit fortschreitender Umwandlung des Norg mikrobielle N-Rückstände nur vorübergehend im Boden akkumulieren, da sie in späteren Abbauphasen wieder mineralisiert werden. Mikroorganismen bauten zunehmend N in intakte Zellwandrückstände ein, wenn sich die Frostperioden verkürzten. Bei einer Jahresmitteltemperatur über 12,15,°C sank der Beitrag mikrobieller Rückstände zum N-Gehalt, vermutlich weil Mikroorganismen diese mangels anderer Substrate verstärkt mineralisierten. Umbrüche von Gras- zu Ackerland führten zu raschen N-Verlusten. Mikrobielle N-Rückstände wurden bevorzugt abgebaut, ein Effekt, den höhere Temperaturen verstärkten. Demnach steuerte das Klima die Intensität von Nutzungseffekten auf die Norg -Dynamik. Doch nicht der gesamte Norg war für Mikroorganismen zugänglich. Der D-Gehalt von Asparaginsäure und Lysin nahm mit steigendem Alter der organischen Bodensubstanz zu, Lysin racemisierte in den verschiedenen Böden sogar mit gleicher Geschwindigkeit. Anders als die Bildung von D-Asparaginsäure wurde die von Lysin also nicht durch Mikroorganismen beeinflusst. Die Racemisierung der beiden Aminosäuren deutet deshalb darauf hin, dass nicht-bioverfügbare Norg -Bestandteile biotisch und abiotisch im Boden altern. Klimaeinwirkungen auf den Verbleib alter Proteinrückstände ließen sich nicht feststellen. Mit Umbruch von Gras- zu Ackerland erhielten Mikroorganismen allerdings Zugang zu alten Norg -Verbindungen und bauten diese ab. [source]


Multi-component stable isotope records from Late Weichselian and early Holocene lake sediments at Imio,ki, Poland: palaeoclimatic and methodological implications,

JOURNAL OF QUATERNARY SCIENCE, Issue 8 2009
Karina Apolinarska
Abstract Late Weichselian and early Holocene climatic and environmental changes are inferred from stable carbon and oxygen isotope records obtained on bulk and biogenic carbonates from the sediment sequence of Lake Lednica, western Poland. Along with sediment and pollen stratigraphic data, a wide range of carbonate components occurring in the sediments was analysed for ,13C and ,18O, including shells of several gastropod species and the bivalve genus Pisidium, carapaces of the ostracod subfamily Candoninae and oogonia of the aquatic macrophyte genus Chara. The development of catchment soils and the onset of authigenic carbonate production in response to the climatic amelioration during the Late Weichselian are clearly reflected by rising carbonate content, distinct isotopic shifts in bulk carbonates and decreasing ,13C values of bulk organic matter in the sediments. The GI-1/GS-1 (the Bølling,Allerød Interstadial complex/Younger Dryas Stadial) and the GS-1/Preboreal transitions are marked by significant shifts in ,18O values of 2,3,, as well as by distinct changes in carbonate content, indicative of a decrease and a subsequent increase in mean annual temperature. Corresponding ,13C records reflect primarily changes in aquatic productivity, with favourable conditions for phytoplankton and macrophytes during GI-1 and the Preboreal resulting in persistent 13C enrichment. The Younger Dryas Stadial is characterised by depletions in 13C and 18O, with indications of a climatic tripartition. Consistent offsets in ,13C and ,18O between records obtained on specific carbonate components reflect vital effects in combination with seasonal characteristics and habitat preferences of the respective carbonate-precipitating biota. Largely parallel first-order variations in ,13C and ,18O of the different carbonate components demonstrate that individual isotope records may provide important palaeoclimatic information, although more detailed reconstructions can be obtained from multi-component analysis. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A multi-proxy palaeoecological and palaeoclimatic record within full glacial lacustrine deposits, western Tennessee, USA,

JOURNAL OF QUATERNARY SCIENCE, Issue 8 2009
David A. Grimley
Abstract The Fulton Section, along the Mississippi River in western Tennessee, USA, is a 1,km continuous exposure (,20,m vertically) of Quaternary fluvial and lacustrine deposits, inset within Eocene sediments and buried by thick loess. Fossiliferous slackwater lake sediments record maximum aggradation during the last two major glaciations, with deposition between ca. 190,140,ka and 24, 18 14C ka BP, based on amino acid and radiocarbon chronology, respectively. During the onset of full glacial conditions (ca. 24,22 14C ka BP), a relatively permanent shallow lake environment is indicated by ostracods, aquatic molluscs, and both pollen and macrofossils of aquatic plants. By 21.8 14C ka BP, increasing emergent plants, amphibious gastropods (Pomatiopsis) and heavier ,18O compositions suggest marsh-like conditions in a periodically drying lake. The surrounding uplands consisted of Picea,Pinus woodlands mixed with cool-temperate hardwoods (e.g. Quercus, Populus, Carya), grasses and herbs. More open conditions ensued ca. 20 14C ka BP, with loess and slopewash gradually infilling the former lake by 18 14C ka BP. Modern analogue analyses of ostracods and palaeontological evidence imply a full glacial climate similar to today's mixed-boreal zone in central Minnesota, USA, about 9°C cooler in mean annual temperature than present-day western Tennessee. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data

NEW PHYTOLOGIST, Issue 1 2006
Dafeng Hui
Summary ,,Biomass partitioning is an important variable in terrestrial ecosystem carbon modeling. However, geographical and interannual variability in fBNPP, defined as the fraction of belowground net primary productivity (BNPP) to total NPP, and its relationship with climatic variables, have not been explored. ,,Here we addressed these issues by synthesizing 94 site-year field biomass data at 12 grassland sites around the world from a global NPP database and from the literature. ,,Results showed that fBNPP varied from 0.40 to 0.86 across 12 sites. In general, savanna and humid savanna ecosystems had smaller fBNPP but larger interannual variability in fBNPP, and cold desert steppes had larger fBNPP but smaller interannual variability. While mean fBNPP at a site decreased significantly with increasing mean annual temperature and precipitation across sites, no consistent temporal response of fBNPP with annual temperature and precipitation was found within sites. ,,Based on these results, both geographical variability in fBNPP and the divergent responses of fBNPP with climatic variables at geographical and temporal scales should be considered in global C modeling. [source]


Climate variables as predictors of basal metabolic rate: New equations

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 5 2008
Andrew W. Froehle
Estimation of basal metabolic rate (BMR) and daily energy expenditure (DEE) in living humans and in fossil hominins can be used to understand the way populations adapt to different environmental and nutritional circumstances. One variable that should be considered in such estimates is climate, which may influence between-population variation in BMR. Overall, populations living in warmer climates tend to have lower BMR than those living in colder climates, even after controlling for body size and composition. Current methods of estimating BMR ignore climate, or deal with its effects in an insufficient manner. This may affect studies that use the factorial method to estimate DEE from BMR, when BMR is not measured but predicted using an equation. The present meta-analysis of published BMR uses stepwise regression to investigate whether the inclusion of climate variables can produce a generally applicable model for human BMR. Regression results show that mean annual temperature and high heat index temperature have a significant effect on BMR, along with body size, age and sex. Based on the regression analysis, equations predicting BMR from body size and climate variables were derived and compared with existing equations. The new equations are generally more accurate and more consistent across climates than the older ones. Estimates of DEE in living and fossil humans using the new equations are compared with estimates using previously published equations, illustrating the utility of including climate variables in estimates of BMR. The new equations derived here may prove useful for future studies of human energy expenditure. Am. J. Hum. Biol., 2008. © 2008 Wiley-Liss, Inc. [source]


Ecological stress and linear enamel hypoplasia in Cebus

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010
Madeleine B. Chollet
Abstract Although it is assumed that monkeys in some environments experience more nutritional or physiological stress than others, little research has been conducted on this topic. This study examines the relationship between linear enamel hypoplasia (LEH) frequency, a physiological indicator of stress, and environmental stressors. To test this relationship, LEH frequencies were calculated for 144 Cebus from 54 locations in Brazil. Habitat, temperature range, and annual rainfall were compared between individuals with and without LEH. The LEH frequency for Cebus from semideciduous forests was significantly higher than that for monkeys from coastal areas, the rainforest, and the savanna (,2 = 9.97, df = 1; P = 0.0016). A significantly higher LEH frequency was also found for monkeys living in environments with the mean annual temperature between 15 and 18°C than for those in environments greater than 18°C (,2 = 7.74, df = 1, P = 0.0054). However, no significant difference was found between LEH frequency and annual rainfall (t = 1.22, P = 0.23) or the average difference in rainfall between the driest and wettest months (t = 0.77, P = 0.44). These results indicate that levels of physiological stress can differ among environments and that habitat and temperature, but not precipitation, may be driving the difference in stress levels among environments. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


Climatic factors influencing the isotope composition of Italian olive oils and geographic characterisation

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 3 2009
Paola Iacumin
The purpose of this study was to investigate the possibility of identifying oil source areas by means of simple measurements on the natural samples avoiding time-consuming sample treatments. The oxygen and carbon isotopic values of 150 samples of extra-virgin olive oil from eight different Italian regions and from three different years of production were measured according to well-established techniques. Statistical treatments of the results obtained show a very good correlation of the ,18O of oil with latitude, mean annual temperature, and mean relative humidity at the collection site. No correlation is found with elevation and mean annual precipitation. The shift of the oil ,18O per degree centigrade of the mean annual temperature is quantitatively close to that calculated for atmospheric precipitation in continental areas. Accordingly, in our measurements, the year of oil production can be identified on the basis of the ,18O value (mean 2004 temperatures were higher than 2005 temperatures). On the contrary, the oil ,13C values show no correlation with the above variables but only with latitude and, consequently, are less suitable for discriminating the geographic origin of oil. However, the ,13C values are suitable to indicate biological differentiation while the ,18O values are not. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Effects of forest management on epiphytic lichen diversity in Mediterranean forests

APPLIED VEGETATION SCIENCE, Issue 2 2010
Gregorio Aragón
Abstract Question: What are the responses of epiphytic lichens to the intensity of management along a large environmental gradient in Mediterranean Quercus forests? Location: Central Spain. Methods: This study was carried out on 4590 trees located in 306 forest stands dominated by Quercus faginea or Quercus ilex ssp. ballota. The effect of forest management and other predictor variables on several species diversity indicators were studied. Variables modelled were total species richness, cyanolichen richness and community composition. A large number of predictor variables were included: forest fragmentation (patch size, stand variability), climate and topographic (altitude, slope, sun radiation, annual rainfall and mean annual temperature) and intensity of management. General linear models and constrained ordination techniques were used to model community traits and species composition, respectively. Results: Total richness and especially cyanolichens richness were significantly and negatively affected by the intensity of management. Lichen composition was influenced by management intensity, climatic and topographic variables and stand variability. Conclusions: In Mediterranean forests, human activities related to forestry, agricultural and livestock use cause impoverishment of lichen communities, including the local disappearance of the most demanding species. The conservation of unmanaged forests with a dense canopy is crucial for lichen diversity. [source]


Vegetation succession in basalt quarries: Pattern on a landscape scale

APPLIED VEGETATION SCIENCE, Issue 2 2003
Jan Novák
Abstract. A spatio-temporal variation of vegetation during spontaneous succession was studied in 56 basalt quarries spread over 1800 km2 in the ,eské st,edoho,í Hills (NW Czech Republic, Central Europe). Differences in the particular habitats inside a quarry, i.e. steep rocky slopes, bottoms and levels; dumps; and screes were considered. The habitats ranged in age from 1 to 78 yr since abandonment. Macroclimate (mean annual temperature and precipitation) significantly influenced the course of succession, which led to a formation of shrubby grassland, shrubby woodland or tall woodland. Participation of target species typical of steppe-like communities significantly depended on the occurrence of the communities in the vicinity, up to a distance of 30 m from a quarry. Disused quarries may become refugia for rare plant species. Spontaneous successional processes led in the reasonable time of ca. 20 yr to semi-natural vegetation. Thus, they can be successfully exploited in restoration programs scheduled for the disused quarries. [source]