Methylation Analysis (methylation + analysis)

Distribution by Scientific Domains

Kinds of Methylation Analysis

  • dna methylation analysis


  • Selected Abstracts


    Strategy in clinical practice for classification of unselected colorectal tumours based on mismatch repair deficiency

    COLORECTAL DISEASE, Issue 5 2008
    L. H. Jensen
    Abstract Objective, Deficiency of DNA mismatch repair (MMR) causes microsatellite instability (MSI) in a subset of colorectal cancers. Patients with these tumours have a better prognosis and may have an altered response to chemotherapy. Some of the tumours are caused by hereditary mutations (hereditary nonpolyposis colon cancer or Lynch syndrome), but most are epigenetic changes of sporadic origin. The aim of this study was to define a robust and inexpensive strategy for such classification in clinical practice. Method, Tumours and blood samples from 262 successive patients with colorectal adenocarcinomas were collected. Expression of the MMR proteins MLH1, MSH2, and MSH6 by immunohistochemistry (IHC) was compared with MSI DNA analysis. Methylation analysis of MLH1 and mutation analysis for BRAF V600E were compared in samples with MSI and/or lack of MLH1 expression to determine if the tumour was likely to be sporadic. Results, Thirty-nine (14.9%) of the tumours showed MMR deficiency by IHC or by microsatellite analysis. Sporadic inactivation by methylation of MLH1 promoter was found in 35 patients whereby the BRAF activating V600E mutation, indicating sporadic origin, was found in 32 tumours. On the basis of molecular characteristics we found 223 patients with intact MMR, 35 patients with sporadic MMR deficiency, and four patients who were likely to have hereditary MMR deficiency. Conclusion, To obtain the maximal benefit for patients and clinicians, MMR testing should be supplemented with MLH1 methylation or BRAF mutation analysis to distinguish sporadic patients from likely hereditary ones. MMR deficient patients with sporadic disease can be reassured of the better prognosis and the likely hereditary cases should receive genetic counselling. [source]


    Structural studies of the capsular polysaccharide and lipopolysaccharide O-antigen of Aeromonas salmonicida strain 80204-1 produced under in vitro and in vivo growth conditions

    FEBS JOURNAL, Issue 22 2004
    Zhan Wang
    Aeromonas salmonicida is a pathogenic aquatic bacterium and the causal agent of furunculosis in salmon. In the course of this study, it was found that when grown in vitro on tryptic soy agar, A. salmonicida strain 80204-1 produced a capsular polysaccharide with the identical structure to that of the lipopolysaccharide O-chain polysaccharide. A combination of 1D and 2D NMR methods, including a series of 1D analogues of 3D experiments, together with capillary electrophoresis-electrospray MS (CE-ES-MS), compositional and methylation analyses and specific modifications was used to determine the structure of these polysaccharides. Both polymers were shown to be composed of linear trisaccharide repeating units consisting of 2-acetamido-2-deoxy- d -galacturonic acid (GalNAcA), 3-[(N -acetyl-L-alanyl)amido]-3,6-dideoxy- d -glucose{3-[(N -acetyl- l -alanyl)amido]-3-deoxy- d -quinovose, Qui3NAlaNAc} and 2-acetamido-2,6-dideoxy- d -glucose (2-acetamido-2-deoxy- d -quinovose, QuiNAc) and having the following structure: [,3)- , - d -GalpNAcA-(1,3)- , - d -QuipNAc-(1,4)- , - d -Quip3NAlaNAc-(1-]n, where GalNAcA is partly presented as an amide and AlaNAc represents N -acetyl- l -alanyl group. CE-ES-MS analysis of CPS and O-chain polysaccharide confirmed that 40% of GalNAcA was present in the amide form. Direct CE-ES-MS/MS analysis of in vivo cultured cells confirmed the formation of a novel polysaccharide, a structure also formed in vitro, which was previously undetectable in bacterial cells grown within implants in fish, and in which GalNAcA was fully amidated. [source]


    Structure of a 2-aminoethyl phosphate-containing O-specific polysaccharide of Proteus penneri 63 from a new serogroup O68

    FEBS JOURNAL, Issue 2 2000
    Aleksander S. Shashkov
    Lipopolysaccharide of Proteus penneri strain 63 was degraded by mild acid to give a high molecular mass O-specific polysaccharide that was isolated by gel-permeation chromatography. Sugar and methylation analyses and NMR spectroscopic studies, including two-dimensional 1H,1H COSY, TOCSY rotating-frame NOE spectroscopy, H-detected 1H,13C and 1H,31P heteronuclear multiple-quantum coherence (HMQC), and 1H,13C HMQC-TOCSY experiments, demonstrated the following structure of the polysaccharide: where FucNAc is 2-acetamido-2,6-dideoxygalactose and PEtn is 2-aminoethyl phosphate. The polysaccharide studied shares some structural features, such as the presence of d -GlcNAc6PEtn and an ,- L -FucNAc-(1,3)- d -GlcNAc disaccharide, with other Proteus O-specific polysaccharides. A marked cross-reactivity of P. penneri 63 O-antiserum with P. vulgaris O12 was observed and substantiated by a structural similarity of the O-specific polysaccharides of the two strains. In spite of this, the polysaccharide of P. penneri 63 has the unique structure among Proteus O-antigens, and therefore a new, separate serogroup, O68, is proposed for this strain. [source]


    The identity of the O-specific polysaccharide structure of Citrobacter strains from serogroups O2, O20 and O25 and immunochemical characterisation of C. youngae PCM 1507 (O2a,1b) and related strains

    FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1-2 2003
    gorzata Miesza
    Abstract Serological studies using SDS,PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti- Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti- Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography. Sugar and methylation analyses along with 1H- and 13C-NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments, showed that the repeating unit of the OPS has the following structure: NMR spectroscopic studies demonstrated that Citrobacter werkmanii O20 and C. youngae O25 have the same OPS structure as C. youngae O2. Sugar and methylation analyses of the core oligosaccharide fractions demonstrated structural differences in the lipopolysaccharide core regions of these strains, which may substantiate their classification in different serogroups. [source]


    Full Structure of the Carbohydrate Chain of the Lipopolysaccharide of Providencia rustigianii,O34

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 20 2008

    Abstract A lipopolysaccharide isolated from an opportunistic pathogen of the Enterobacteriaceae family Providencia rustigianii,O34 was found to be a mixture of R-, SR-, and S - forms consisting of a lipid moiety (lipid,A) that bears a core oligosaccharide, a core with one O-polysaccharide repeating unit attached, and a long-chain O-polysaccharide, respectively. The corresponding carbohydrate moieties were released from the lipopolysaccharide by mild acid hydrolysis and studied by sugar and methylation analyses along with one- and two-dimensional NMR spectroscopy and high-resolution electrospray ionization mass spectrometry. As a result, the structures of the core and the O-polysaccharide were established, including the structure of the biological repeating unit (an oligosaccharide that is preassembled and polymerized in biosynthesis of the O-polysaccharide), as well as the mode of the linkage between the O-polysaccharide and the core. Combining the structure of the carbohydrate moiety thus determined and the known structure of lipid,A enabled determination of the full lipopolysaccharide structure of P. rustigianii,O34. [source]


    Novel ,-1,3-, 1,6-oligoglucan elicitor from Alternaria alternata 102 for defense responses in tobacco

    FEBS JOURNAL, Issue 11 2006
    Tomonori Shinya
    A novel elicitor that induces chitinases in tobacco BY-2 cells was isolated from Alternaria alternata 102. Six other fungi, including A. alternata IFO 6587, could not induce, or weakly induce chitinase activity. The purified elicitor was soluble in 75% methanol and showed the chitinase-inducing activity when applied at concentrations of as low as 25 ng·mL,1. Structural determination by methylation analysis, reducing-end analysis, MALDI-TOF/MS, and NMR spectroscopy indicated that the elicitor was a mixture of ,-1,3-, 1,6-oligoglucans mostly with a degree of polymerization of between 8 and 17. Periodate oxidation of the elicitor suggested that the 1,6-linked and nonreducing terminal residues are essential for the elicitor activity. Further analysis of the elicitor responses in BY-2 cells indicated that the activity of this ,-1,3-, 1,6-glucan elicitor was about 1000 times more potent than that of laminarin, which is a known elicitor of defense responses in tobacco. Analyzing the expression of defense-related genes indicated that a phenylalanine ammonia-lyase gene and a coumaroyl-CoA O -methyltransferase gene were transiently expressed by this ,-1,3-, 1,6-glucan elicitor. The elicitor induced a weak oxidative burst but did not induce cell death in the BY-2 cells. In the tissue of tobacco plants, this ,-1,3-, 1,6-glucan elicitor induced the expression of basic PR-3 genes, the phenylpropanoid pathway genes, and the sesquiterpenoid pathway genes. In comparison with laminarin and laminarin sulfate, which are reported to be potent elicitors of defense responses in tobacco, the expression pattern of genes induced by the purified ,-1,3-, 1,6-glucan elicitor was more similar to that induced by laminarin than to that induced by laminarin sulfate. [source]


    Novel polysialogangliosides of skate brain

    FEBS JOURNAL, Issue 16 2000
    Structural determination of tetra, hexasialogangliosides with a NeuAc-GalNAc linkage, penta
    The gangliosides in the brain of a cartilaginous fish, skate (Bathyraja smirnovi), have been isolated and characterized by means of methylation analysis, antibody binding, enzymatic hydrolysis and MALDI-TOF MS. In addition to gangliosides with known structures (GM2, fucosyl-GM1, GD3, GD2, GT3 and GT2), five polysialogangliosides were isolated and characterized as having the following structures. (1) IV3NeuAc, III6NeuAc, II3NeuAc-Gg4Cer; (2) IV3NeuAc2, III6NeuAc, II3NeuAc-Gg4Cer; (3) IV3NeuAc, III6NeuAc, II3NeuAc2 -Gg4Cer; (4) IV3NeuAc, III6NeuAc, II3NeuAc3 -Gg4Cer; and (5) IV3NeuAc2, III6NeuAc, II3NeuAc3 -Gg4Cer. These structures are ,hybrid-type' which comprise combinations of ,-series and either a, b or c-series structures. Three gangliosides (2), (4) and (5), were novel. The main features of the ganglioside composition of skate brain were an abundance of gangliotriaosyl species, a lack of gangliotetraosyl species (except fucosyl-GM1), and an abundance of hybrid-types. These characteristics closely resemble those in shark brain which we reported previously [Nakamura, K., Tamai, Y. & Kasama, T. (1997) Neurochem. Int.30, 593,604]. Two of the hybrid-type gangliosides (1) and (4), were examined for their neuritogenic activity toward cultured neuronal cells (Neuro-2A), and were found to have more potent activity than nonhybrid-type gangliosides such as GM1. [source]


    Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata

    FEBS JOURNAL, Issue 6 2000
    Kazuyoshi Kawahara
    Two glycosphingolipids, GSL-1 and GSL-3, were isolated from Sphingomonas capsulata and studied by methylation analysis, laser desorption mass spectrometry, and 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY and heteronuclear 13C,1H COSY experiments. GSL-1 and GSL-3 differ in their carbohydrate part, their structures being ,- d -GlcpA-(1,1)-Cer and ,- d -Galp -(1,6)-,- d -GlcpN-(1,4)-,- d -GlcpA(1,1)Cer, respectively. Variations occur in the ceramide of GSL-1 and GSL-3, both having the same long-chain bases, erythro -2-amino-1,3-octadecanediol (sphinganine), (13Z)- erythro -2-amino-13-eicosene-1,3-diol and (13Z)- erythro -2-amino-13,14-methylene-1,3-eicosanediol, in the ratios 2.6 : 1 : 3.5 in GSL-1 and 1 : 1.2 : 1.5 in GSL-3. All bases are quantitatively substituted by amide-linked (S)-2-hydroxymyristic acid. [source]


    Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3 -Cre and complete exclusion of Dnmt3b by chimera formation

    GENES TO CELLS, Issue 3 2010
    Masahiro Kaneda
    In the male and female germ-lines of mice, both of the two de novo DNA methyltransferases Dnmt3a and Dnmt3b are expressed. By the conditional knockout experiments using the Tnap -Cre gene, we previously showed that deletion of Dnmt3a in primordial germ cells disrupts paternal and maternal imprinting, however, Dnmt3b mutants did not show any defect. Here, we have knocked out Dnmt3a after birth in growing oocytes by using the Zp3 -Cre gene and obtained genetic evidence that de novo methylation by Dnmt3a during the oocyte growth stage is indispensable for maternal imprinting. We also carried out DNA methylation analysis in the mutant oocytes and embryos and found that hypomethylation of imprinted genes in Dnmt3a -deficient oocytes was directly inherited to the embryos, but repetitive elements were re-methylated during development. Furthermore, we show that Dnmt3b -deficient cells can contribute to the male and female germ-lines in chimeric mice and can produce normal progeny, establishing that Dnmt3b is dispensable for mouse gametogenesis and imprinting. Finally, Dnmt3-related protein Dnmt3L is not only essential for methylation of imprinted genes but also enhances de novo methylation of repetitive elements in growing oocytes. [source]


    Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b

    GENES TO CELLS, Issue 7 2006
    Akiko Tsumura
    DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cell types, indicating its essential role in the basic cellular function of mammalian cells. Previous studies using Dnmt1,/, or Dnmt3a,/,Dnmt3b,/, ES cells, however, have shown that undifferentiated embryonic stem (ES) cells can tolerate hypomethylation for their proliferation. In an attempt to investigate the effects of the complete loss of CpG DNA methyltransferase function, we established mouse ES cells lacking all three of these enzymes by gene targeting. Despite the absence of CpG methylation, as demonstrated by genome-wide methylation analysis, these triple knockout (TKO) ES cells grew robustly and maintained their undifferentiated characteristics. TKO ES cells retained pericentromeric heterochromatin domains marked with methylation at Lys9 of histone H3 and heterochromatin protein-1, and maintained their normal chromosome numbers. Our results indicate that ES cells can maintain stem cell properties and chromosomal stability in the absence of CpG methylation and CpG DNA methyltransferases. [source]


    Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma

    GENES, CHROMOSOMES AND CANCER, Issue 1 2009
    Vanessa F. Bonazzi
    Tumor suppressor genes (TSGs) are sometimes inactivated by transcriptional silencing through promoter hypermethylation. To identify novel methylated TSGs in melanoma, we carried out global mRNA expression profiling on a panel of 12 melanoma cell lines treated with a combination of 5-Aza-2-deoxycytidine (5AzadC) and an inhibitor of histone deacetylase, Trichostatin A. Reactivation of gene expression after drug treatment was assessed using Illumina whole-genome microarrays. After qRT-PCR confirmation, we followed up 8 genes (AKAP12, ARHGEF16, ARHGAP27, ENC1, PPP1R3C, PPP1R14C, RARRES1, and TP53INP1) by quantitative DNA methylation analysis using mass spectrometry of base-specific cleaved amplification products in panels of melanoma cell lines and fresh tumors. PPP1R3C, ENC1, RARRES1, and TP53INP1, showed reduced mRNA expression in 35,59% of the melanoma cell lines compared to melanocytes and which was correlated with a high proportion of promoter methylation (>40,60%). The same genes also showed extensive promoter methylation in 6,25% of the tumor samples, thus confirming them as novel candidate TSGs in melanoma. © 2008 Wiley-Liss, Inc. [source]


    Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies

    GENES, CHROMOSOMES AND CANCER, Issue 9 2007
    Tino Schenk
    The preferentially expressed antigen of melanoma (PRAME) is expressed at high levels in large fractions of human malignancies, e.g., acute myeloid leukemia. Therefore, PRAME is an important marker for diagnosis of various malignant diseases and a relevant parameter for monitoring minimal residual disease. It is supposed to be involved in tumorigenic processes. Because of these important aspects we investigated its transcriptional regulation in detail. Most relevant was a detailed DNA methylation analysis of the PRAME 5, region by genomic sequencing in correlation with PRAME expression in various human patient samples and cell lines. In combination with DNA-truncation/transfection experiments with respect to DNA methylation, we show that changes in the methylation pattern in defined parts of the regulatory regions of PRAME are sufficient for its upregulation in cells usually not expressing the gene. © 2007 Wiley-Liss, Inc. [source]


    Rapid detection of methylation change at H19 in human imprinting disorders using methylation-sensitive high-resolution melting,

    HUMAN MUTATION, Issue 10 2008
    Tomasz K. Wojdacz
    Abstract Beckwith Wiedemann syndrome (BWS) and Russell Silver syndrome (RS) are growth disorders with opposing epimutations affecting the H19/IGF2 imprinting center at 11p15.5. Overgrowth and tumor risk in BWS is caused by aberrant expression of the paternally expressed, imprinted IGF2 gene, occurring as a consequence of mosaic hypermethylation within the imprinting center, or to mosaic paternal uniparental disomy (UPD). RS is characterized by severe intrauterine growth retardation (IUGR). A subset of RS cases were recently shown to have mosaic hypomethylation within the H19/IGF2 imprinting center, predicted to silence paternally expressed IGF2 in early development. Molecular diagnosis for BWS and RS involves methylation analysis of the H19 locus, enabling discrimination of allelic methylation patterns. In this study, methylation-sensitive high-resolution melting analysis (MS-HRM) was used to analyze methylation within the intergenic region of the H19 locus. A total of 36 samples comprising normal control (11), BWS (19), and RS (six) DNA were analyzed in a blinded study and scored as hypermethylated, normal, or hypomethylated. Results were compared with those derived by methylation-sensitive Southern blotting using the restriction enzymes Rsa I and Hpa II. A total of 100% concordance was obtained for the Southern blotting and MS-HRM scores. A total of three samples with paternal duplication affecting the H19/IGF2 region were scored as equivocal by both methods; however, 33 out of 36 (92%) the samples were unambiguously scored as being hypermethylated, hypomethylated, or normally methylated using MS-HRM. We conclude that MS-HRM is a rapid, cost-effective, and sensitive method for screening mosaic methylation changes at the H19 locus in BWS and RS. Hum Mutat 0,1,6, 2008. © 2008 Wiley-Liss, Inc. [source]


    Outcome prediction and risk assessment by quantitative pyrosequencing methylation analysis of the SFN gene in advanced stage, high-risk, neuroblastic tumor patients

    INTERNATIONAL JOURNAL OF CANCER, Issue 3 2010
    Barbara Banelli
    Abstract The aim of our study was to identify threshold levels of DNA methylation predictive of the outcome to better define the risk group of stage 4 neuroblastic tumor patients. Quantitative pyrosequencing analysis was applied to a training set of 50 stage 4, high risk patients and to a validation cohort of 72 consecutive patients. Stage 4 patients at lower risk and ganglioneuroma patients were included as control groups. Predictive thresholds of methylation were identified by ROC curve analysis. The prognostic end points of the study were the overall and progression-free survival at 60 months. Data were analyzed with the Cox proportional hazard model. In a multivariate model the methylation threshold identified for the SFN gene (14.3.3,) distinguished the patients presenting favorable outcome from those with progressing disease, independently from all known predictors (Training set: Overall Survival HR 8.53, p = 0.001; Validation set: HR 4.07, p = 0.008). The level of methylation in the tumors of high-risk patients surviving more than 60 months was comparable to that of tumors derived from lower risk patients and to that of benign ganglioneuroma. Methylation above the threshold level was associated with reduced SFN expression in comparison with samples below the threshold. Quantitative methylation is a promising tool to predict survival in neuroblastic tumor patients. Our results lead to the hypothesis that a subset of patients considered at high risk,but displaying low levels of methylation,could be assigned at a lower risk group. [source]


    DNA methylation patterns at the IGF2-H19 locus in sperm of Swiss Landrace and Swiss Large White boars

    JOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 6 2009
    Petra Giannini
    Summary DNA methylation patterns at the IGF2-H19 locus were investigated in sperm DNA from Swiss Landrace (SL) and Swiss Large White (LW) boars. The putative IGF2 differentially methylated regions (DMR) 0, 1 and 2, a quantitative trait nucleotide (QTN) region in the intron 3 and a CpG island in the intron 4 of the IGF2 gene as well as three regions around porcine CTCF binding sites within the H19 differentially methylated domain (DMD) were selected for the DNA methylation analysis. In both breeds putative IGF2 DMR0, 1, 2 and H19 DMD were hypermethylated. Significant differences in DNA methylation content were found between the two breeds in the two DMD regions proximal to the H19 gene. The IGF2 QTN region and the CpG island in the IGF2 intron 4 were hypomethylated in sperm DNA of both breeds. The methylation analysis revealed significantly more methylated CpG sites in the intron 4 of sperm from the LW breed than in that from SL. No difference was found in global DNA methylation between the two breeds. These results indicate differences in DNA methylation patterns between breeds and it remains to be established whether variation in DNA methylation patterns impacts on phenotypic traits. [source]


    Tissue-specific dysregulation of DNA methylation in aging

    AGING CELL, Issue 4 2010
    Reid F. Thompson
    Summary The normal aging process is a complex phenomenon associated with physiological alterations in the function of cells and organs over time. Although an attractive candidate for mediating transcriptional dysregulation, the contribution of epigenetic dysregulation to these progressive changes in cellular physiology remains unclear. In this study, we employed the genome-wide HpaII tiny fragment enrichment by ligation-mediated PCR assay to define patterns of cytosine methylation throughout the rat genome and the luminometric methylation analysis assay to measure global levels of DNA methylation in the same samples. We studied both liver and visceral adipose tissues and demonstrated significant differences in DNA methylation with age at > 5% of sites analyzed. Furthermore, we showed that epigenetic dysregulation with age is a highly tissue-dependent phenomenon. The most distinctive loci were located at intergenic sequences and conserved noncoding elements, and not at promoters nor at CG-dinucleotide-dense loci. Despite this, we found that there was a subset of genes at which cytosine methylation and gene expression changes were concordant. Finally, we demonstrated that changes in methylation occur consistently near genes that are involved in metabolism and metabolic regulation, implicating their potential role in the pathogenesis of age-related diseases. We conclude that different patterns of epigenetic dysregulation occur in each tissue over time and may cause some of the physiological changes associated with normal aging. [source]


    Genetic and epigenetic alterations of the KLF6 gene in hepatocellular carcinoma

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 8 2006
    Jaehwi Song
    Abstract Background and Aim:, Kruppel-like factor 6 (KLF6) is a zinc finger tumor suppressor gene that is frequently mutated in several human cancers and is broadly involved in differentiation and development, growth-related signal transduction, cell proliferation, apoptosis, and angiogenesis. The aim of this study was to elucidate the potential etiological role of KLF6 in the development of hepatocellular carcinoma (HCC) in Korea. Methods:, The gene mutation, allelic loss, and methylation status of the KLF6 gene was analyzed in a series of 85 Korean patients: 21 with dysplastic nodules and 85 with HCC. Results:, No somatic mutations were observed in the patients with dysplastic nodules or with HCC. Allelic loss was found in five (6.8%) of 73 informative HCC tissues. Three of the five patients with allelic loss had HCC with hepatitis B virus infection and cirrhosis, and the remaining two had no viral infection and a non-specific background. In methylation analysis, unmethylated and methylated DNAs of the KLF6 gene were amplified in all corresponding non-neoplastic liver tissues. Only one HCC tissue showed methylated DNA without unmethylated DNA. Conclusions:, The results suggest that genetic and epigenetic alteration of KLF6 may play a minor role in the development of HCC. [source]


    Down-regulation of members of glycolipid-enriched membrane raft gene family, MAL and BENE, in cervical squamous cell cancers

    JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH (ELECTRONIC), Issue 1 2004
    Mitsuko Hatta
    Abstract Persistent human papillomavirus infections cause infected epithelial cells to lose cellular polarity leading to cell transformation. Glycolipid-enriched membrane (GEM) rafts are implicated in polarized sorting of apical membrane proteins in epithelial cells and even in signal transduction. The MAL and BENE are essential component of the GEM raft's machinery for apical sorting of membrane proteins. In this study we demonstrated down-regulation of MAL and BENE mRNA in over two-thirds of primary cervical squamous cell cancers (14 and 15 of 20 cases, for MAL and BENE, respectively) when compared to corresponding non-cancerous uterine squamous cells. Allelic loss or hyper-methylation was not accompanied by MAL or BENE mRNA down-expression in human primary cervical cancers in microsatellite allelic analysis and HpaII-PCR-based methylation analysis of the MAL and BENE genomic region. In addition, we note down-regulation of these genes in established cervical cancer cell lines. These results suggest that down-regulation of MAL and BENE genes, which are essential components of the cellular polarized sorting system, play an important role in human cervical squamous cell cancer development. [source]


    Alterations of p16/MTS1 gene in oral squamous cell carcinomas from Taiwanese

    JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 4 2000
    Shu-Chun Lin
    Abstract: To determine the alterations of the p16/MTS1 gene in oral squamous cell carcinoma (OSCC), we examined in Taiwanese patients the mutation, deletion and methylation of p16/MTS1 in primary OSCCs associated mostly with betel quid (BQ)/tobacco use. Among 110 tumors undergoing mutational analyses, seven (6%) showed mutations in exon 2 or the intron 1/exon 2 splice site. All but one mutation disrupted the encoded proteins. Base transitions represented the vast majority (6/7) of the mutations identified in BQ/tobacco consuming subjects. It was noted that 15/56 (27%) tumors examined by restriction fragment methylation analysis revealed a significant level of methylation in different loci of exon 1 as compared with the respective non-cancerous tissue. Mutation of p16/MTS1 was exclusively identified in carcinomas of buccal mucosa, whereas methylation of the p16/MTS1 promoter region occurred preferentially in carcinomas of the tongue (54%) rather than at other sites (22%). Homozygous deletion was not found in 56 paired samples examined, nor was hemizygous deletion indicated in 12 informative cases. The results indicated aberrant methylation and mutation as the molecular abnormality of p16/MTS1 in the OSCC from Taiwanese. [source]


    Structural features of arabinoxylans from Sonalika variety of wheat: comparison between whole wheat flour and wheat bran

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2003
    CD Nandini
    Abstract Arabinoxylans (AX) were extracted from Sonalika variety of wheat (whole wheat flour and wheat bran) with barium hydroxide and sodium hydroxide and purified by a combination of alcohol precipitation and glucoamylase digestion. Structural features of purified AX were elucidated by methylation analysis, 13C NMR, FT-IR, periodate oxidation and optical rotation measurements. The AX showed a backbone of xylose residues with ,(1,4) linkages and were branched mainly through O-3 of xylose residues. Completely branched xylosyl residues were also present. Copyright © 2003 Society of Chemical Industry [source]


    Structural analysis of a novel anionic polysaccharide from Porphyromonas gingivalis strain W50 related to Arg-gingipain glycans

    MOLECULAR MICROBIOLOGY, Issue 3 2005
    Nikolay Paramonov
    Summary The Arg-gingipains (RgpsA and B) of Porphyromonas gingivalis are a family of extracellular cysteine proteases and are important virulence determinants of this periodontal bacterium. A monoclonal antibody, MAb1B5, which recognizes an epitope on glycosylated monomeric RgpAs also cross-reacts with a cell-surface polysaccharide of P. gingivalis W50 suggesting that the maturation pathway of the Arg-gingipains may be linked to the biosynthesis of a surface carbohydrate. We report the purification and structural characterization of the cross-reacting anionic polysaccharide (APS), which is distinct from both the lipopolysaccharide and serotype capsule polysaccharide of P. gingivalis W50. The structure of APS was determined by 1D and 2D NMR spectroscopy and methylation analysis, which showed it to be a phosphorylated branched mannan. The backbone is built up of ,-1,6-linked mannose residues and the side-chains contain ,-1,2-linked mannose oligosaccharides of different lengths (one to two sugar residues) attached to the backbone via 1,2-linkage. One of the side-chains in the repeating unit contains Man,1-2Man,1-phosphate linked via phosphorus to a backbone mannose at position 2. De- O -phosphorylation of APS abolished cross-reactivity suggesting that Man,1-2Man,1-phosphate fragment forms part of the epitope recognized by MAb1B5. This phosphorylated branched mannan represents a novel polysaccharide that is immunologically related to the post-translational additions of Arg-gingipains. [source]


    Microsatellite instability of papillary subtype of human gastric adenocarcinoma and hMLH1 promoter hypermethylation in the surrounding mucosa

    PATHOLOGY INTERNATIONAL, Issue 4 2001
    Rong-Jun Guo
    Gastric cancer has striking heterogeneity in histological pattern, cellular phenotype, genotype, biomarkers, and biological behavior. We focused on the specific morphological papillary phenotype of gastric adenocarcinoma and attempted to identify its distinct molecular characteristics. In our comparative study, early stage papillary (papillary-dominant) gastric cancer showed a significantly higher and more widespread high-frequency microsatellite instability (MSI-H) than other morphological types. Analysis of mutations in a panel of five putative microsatellite instability (MSI)-associated genes in the MSI-H cases revealed that papillary or papillary-dominant cancer displays a unique profile of mutations compared to profiles previously reported in gastric cancer. Immunohistochemical staining and methylation analysis revealed that silencing of hMLH1 by methylation in its promoter region was responsible for the failure of mismatch repair in papillary-type gastric cancer, whereas aberrant promoter methylation of hMLH1 was not found in any cases without the unique mutator phenotype. Promoter hypermethylation of the hMLH1 genes was found to a lesser degree in the adjacent non-tumor mucosa in four of the 10 cases with tumor having the mutator phenotype. Microsatellite instability itself could not be detected in the adjacent non-tumor mucosa. Inactivation of hMLH1 expression by promoter hypermethylation may be an early event in carcinogenesis of this type of gastric cancer, preceding the development of the clear MSI phenotype of papillary carcinoma. [source]


    A Case,Sibling Assessment of the Association Between Skin Pigmentation and Other Vitamin D-related Factors and Type 1 Diabetes Mellitus

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2009
    Anne-Louise Ponsonby
    Fair skin pigmentation has been associated with a higher risk of type 1 diabetes mellitus (T1DM). The aim is to compare children with T1DM directly to a sibling in relation to their skin pigmentation in sun-exposed and unexposed sites, past sun exposure and methylation of the VDR gene promoter. The sample consisted of children with T1DM attending a diabetes outpatient clinic and siblings (total n = 42). Cutaneous melanin density was estimated using a spectrophotometer. Parental report on past sun exposure was obtained. DNA methylation analysis of the VDR gene promoter was conducted. Matched data analysis was performed comparing each case directly to their sibling. Cases were significantly more likely to have lighter skin pigmentation at the upper arm (AOR 0.69 [95% CI: 0.52, 0.90]; P = 0.01). Low infant sun exposure was imprecisely associated with a two-fold increase in T1DM risk (AOR 2.43 [95% CI: 0.91, 6.51]; P = 0.08 for under 1 h of winter sun exposure per leisure day). The VDR gene promoter was completely unmethylated in both cases and siblings. The previously demonstrated association between light skin pigmentation and T1DM risk was evident even in this comparison across sibling pairs. Further work on past UVR exposure and related factors such as skin pigmentation is required. [source]


    Characterization of the methylation status of five imprinted genes in sheep gametes

    ANIMAL GENETICS, Issue 6 2009
    A. Colosimo
    Summary Genomic imprinting is a mammalian developmental process that uses epigenetic mechanisms to induce monoallelic and parental-specific expression of particular autosomal genes. A crucial epigenetic event consists of DNA methylation of CpG-islands, which become differentially methylated regions (DMRs) on the maternal and paternal alleles during oogenesis or spermatogenesis (germline DMRs). By contrast, somatic DMRs are acquired after fertilization. While there are several studies referring to methylation acquisition within germline DMRs in the mouse and human, a comparable methylation analysis of orthologous sequences is still lacking in sheep. To identify germline DMRs, this study analysed the methylation status of the available CpG-islands of five ovine imprinted genes (H19, IGF2R, DLK1, DIO3 and BEGAIN) in mature spermatozoa and in female gametes at different stages of their follicle growth, including in vitro matured oocytes. The 5,-end CpG-island of H19 showed a full methylation in spermatozoa and an absent methylation in growing and fully grown oocytes. The intron 2 CpG-island of IGF2R was unmethylated in male gametes, while it showed a high level of methylation in early stages of oogenesis. The promoter CpG-islands of DLK1 and DIO3 were found to be unmethylated both in spermatozoa and oocytes. Finally, the exon 9 CpG-island of BEGAIN was hypermethylated in mature male gametes, while it showed an almost complete methylation only in late stages of oocyte development. Our findings suggest that DNA methylation establishment during early stages of sheep oogenesis and subsequent in vitro maturation is gene-specific and that, of the five genes investigated, only the CpG-islands of H19 and IGF2R might represent ovine germline DMRs. [source]


    Aberrant DNA methylation associated with MTHFR C677T genetic polymorphism in cutaneous squamous cell carcinoma in renal transplant patients

    BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2010
    M.E. Laing
    Summary Background, Changes in genomic DNA methylation associated with cancer include global DNA hypomethylation and gene-specific hyper- or hypomethylation. We have previously identified a genetic variant in the MTHFR gene involved in the methylation pathway which confers risk for the development of squamous cell carcinoma (SCC) in renal transplant patients. This genetic variant has also been discovered to confer SCC risk in nontransplant patients with low folate status. Objectives, To explore the methylation profile of SCC compared with adjacent non-neoplastic skin using pyrosequencing, and to elucidate whether the MTHFR polymorphism impacts upon the methylation patterns in SCC. Methods, We used pyrosequencing to evaluate global (using long interspersed nuclear element 1) and gene-specific (p16 and MGMT) methylation status in 47 SCCs and 40 adjacent autologous non-neoplastic skin samples in those with (n = 16) and without (n = 17) the MTHFR polymorphism. Results, Pyrosequencing methylation analysis revealed that SCC was hypomethylated compared with adjacent non-neoplastic skin (P < 0·04). Patients with the MTHFR polymorphism had higher levels of global methylation in tumours and non-neoplastic skin compared with those without the MTHFR polymorphism (P < 0·002). There was no association between levels of methylation in tumour and non-neoplastic skin for the genes MGMT and p16. Conclusions, Global hypomethylation appears to be a feature of SCC. Aberrant methylation of DNA appears related to polymorphisms of MTHFR. Such findings suggest that intervention in the form of demethylating agents or folate supplementation might be beneficial in the treatment or prevention of SCC. [source]


    Inactivation of the CDKN2A and the p53 tumour suppressor genes in external genital carcinomas and their precursors

    BRITISH JOURNAL OF DERMATOLOGY, Issue 3 2007
    N. Soufir
    Summary Background, p53 has been extensively studied in external genital carcinoma (EGC), and is frequently inactivated, but little is known about the role of the CDKN2A tumour suppressor gene in the oncogenesis of EGC. Objectives, To investigate the role of CDKN2A and p53 in the pathogenesis of EGCs and their precursor lesions vulval intraepithelial neoplasia (VIN3), penile intraepithelial neoplasia and lichen sclerosus (LS). Methods, By means of CDKN2A and p53 mutation screening (single-strand conformational polymorphism analysis and sequencing), methylation analysis of alternative CDKN2A promoters (methylation-specific polymerase chain reaction) and p53 immununochemistry, we analysed eight invasive EGCs (five from vulva and three from penis) and 25 precancerous lesions (two undifferentiated VIN3 and 23 vulval/penile lesions of LS) from 33 patients. Results, p53 mutations (mainly transversions) and CDKN2A mutations (including one hot spot) were present in 75% and 50% of invasive tumours, respectively, but were absent in all precancerous lesions. Remarkably, all CDKN2A -mutated tumours also harboured a p53 mutation. CDKN2A or p53 mutations were observed more frequently in LS-derived EGCs than in human papillomavirus-derived EGCs (P = 0·053). A positive anti-p53 staining, but without p53 mutations, was also detected in 30% of LS lesions, suggesting a p53 stabilization in response to inflammation and carcinogenic insult. Methylation of p16INK4a and p14ARF promoters was not a frequent mechanism of CDKN2A inactivation. Conclusions, Our study shows a high prevalence of co-inactivating mutations of p53 and/or CDKN2A genes in EGC, that seem to occur preferentially in LS-derived tumours and late in oncogenesis. [source]


    Structure of an Extracellular Polysaccharide from a Strain of Lactic Acid Bacteria

    CHINESE JOURNAL OF CHEMISTRY, Issue 12 2003
    Xiao-Mei Gu
    Abstract A new extracellular polysaccharide (EPS-I) isolated and purified from Z222, a strain of Lactic acid bacteria has been investigated. Sugar composition analysis, methylation analysis and 1H NMR and 13C NMR spectroscopy reveal that the EPS-I is composed of a pentasaccharide repeating unit. The sequence of sugar residue was determined by using two-dimensional NMR spectroscopy, including heteronuclear multiple-bond correlation (HMBC) and nuclear overhauser effect spectroscopy (NOESY). [source]