Mesoporous Supports (mesoporou + support)

Distribution by Scientific Domains


Selected Abstracts


Efficient Removal of Anionic Surfactants Using Mesoporous Functionalised Hybrid Materials

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 25 2009
Carmen Coll
Abstract A new hybrid system for surfactant removal from water has been developed using mesoporous material (MCM-41) functionalised with suitable binding groups. Solid S1, S2 and S3 were prepared by reaction of the mesoporous material with N -methyl- N, -(propyltrimethoxysilyl)imidazolium chloride, (3-aminopropyl)trimethoxysilane or 4-[(triethoxysilylpropylthio)methyl]pyridine, respectively. The functionalised materials were characterised following standard solid-state techniques. The final prepared solids consist of a siliceous MCM-41-type mesoporous support with the surface decorated by imidazolium, amine and pyridine binding groups suitable for anion coordination. Equilibrium adsorption studies of linear alkylbenzenesulfonate (LAS) using S1, S2 and S3 in water have been carried out. The obtained adsorption data were correlated with a Langmuir isotherm model that gives an acceptable description of the experimental data. The maximum surfactant uptake/binding site (mol,mol,1) and the surfactant adsorption capacity (mmol,g,1) for materials S1, S2 and S3 were calculated. S1 shows a positive-charged functionalised surface that is independent of the pH of the solution, whereas S2 and S3 are functionalised with neutral groups that need to be protonated in order to display electrostatic binding interactions with the anionic surfactants. Therefore, whereas the adsorption capacity of S1 is pH-independent, S2 and S3 display larger LAS adsorption at acidic pH. The adsorption ability at a certain pH follows the order S1 >> S3 > S2. A remarkable maximum surfactant adsorption of 1.5 mmol per gram of material was observed for S1 at neutral pH. S2 and S3 behave as poorer adsorbents and show maximum surfactant adsorption of 0.197 and 0.335 mmol per gram of material, respectively, at pH 2.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Evaluation of sorbent amendments for in situ remediation of metal-contaminated sediments

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010
Seokjoon Kwon
Abstract The present study evaluated sorbent amendments for in situ remediation of sediments contaminated with two divalent metals. A literature review screening was performed to identify low-cost natural mineral-based metal sorbents and high-performance commercial sorbents that were carried forward into laboratory experiments. Aqueous phase metal sorptivity of the selected sorbents was evaluated because dissolved metals in sediment porewater constitute an important route of exposure to benthic organisms. Based on pH-edge sorption test results, natural sorbents were eliminated due to inferior performance. The potential as in situ sediment amendment was explored by comparing the sorption properties of the engineered amendments in freshwater and saltwater (10 PPT salinity estuarine water) matrices. Self-assembled monolayers on mesoporous supports with thiols (Thiol-SAMMSÔ) and a titanosilicate mineral (ATSÔ) demonstrated the highest sorption capacity for cadmium (Cd) and lead (Pb), respectively. Sequential extraction tests conducted after mixing engineered sorbents with contaminated sediment demonstrated transfer of metal contaminants from a weakly bound state to a more strongly bound state. Biouptake of Cd in a freshwater oligochaete was reduced by 98% after 5-d contact of sediment with 4% Thiol-SAMMS and sorbed Cd was not bioavailable. While treatment with ATS reduced the small easily extractable portion of Pb in the sediment, the change in biouptake of Pb was not significant because most of the native lead was strongly bound. The selected sorbents added to sediments at a dose of 5% were mostly nontoxic to a range of sensitive freshwater and estuarine benthic organisms. Metal sorbent amendments in conjunction with activated carbon have the potential to simultaneously reduce metal and hydrophobic contaminant bioavailability in sediments. Environ. Toxicol. Chem. 2010;29:1883,1892. © 2010 SETAC [source]


Architecture and performance of mesoporous silica-lipase hybrids via non-covalent interfacial adsorption

AICHE JOURNAL, Issue 2 2010
Shan Lu
Abstract To investigate the effects of surface property of mesoporous supports on the lipase immobilization and the performance of immobilized lipase, the mesoporous molecular sieve SBA-15 is functionalized with three organic moieties, dimethyl (DM), diisopropyl (DIP), and diisobutyl (DIB), respectively, by post-synthesis grafting and one-pot synthesis methods. Porcine pancreas lipase (PPL) is immobilized on SBA-15 supports through hydrogen bonding and hydrophobic interaction. The hydrophobic adsorption involves no active sites of PPL, and neither hyper-activation nor total inactivation occurs. The study on the intrinsic stability of PPL, including thermal stability, pH stability, and storage stability, indicates that the entrapment in mesoporous supports, and especially in organic-functionalized supports, makes PPL more resistant to temperature increment but more sensitive to pH change. The reusability investigation shows that the organic modification of mesoporous surface inhibits the enzyme leaching to some extent, resulting in a better operational stability. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


Mesoporous Hybrid Materials Containing Nanoscopic "Binding Pockets" for Colorimetric Anion Signaling in Water by using Displacement Assays

CHEMISTRY - A EUROPEAN JOURNAL, Issue 36 2009
María Comes
Abstract Mesoporous solids functionalized with anion-binding groups have proved to be suitable anion hosts and have been used in selective colorimetric displacement assays. The material UVM-7, a mesoporous MCM41-type support characterized by the presence of nanometric mesoporous particle conglomerates, was selected as inorganic scaffolding. Reaction of the template-free UVM-7 solid with 3-aminopropyltriethoxysilane (1) yielded solid S1, from which the derivatives S2 and S3 were obtained by reaction with 2-methylthio-2-imidazoline hydroiodide (2) and butyl isocyanate (3), respectively. Solids S4 and S5 were prepared by reaction of the starting mesoporous UVM-7 scaffolding with N -methyl- N,-propyltrimethoxysilyl imidazolium chloride (4) and with 3-(trimethoxysilyl)propyl- N,N,N -trimethylammonium chloride (5), respectively. The solids synthesized contain mesoporous binding pockets that can interact with anions through electrostatic attractive forces (S1, S2, S4, S5) and hydrogen-bonding interactions (S1, S2, S3, S4). These functionalized solids were loaded with a dye (d) capable of interacting coordinatively with the anchored binding sites, in our case 5-carboxyfluorescein, to yield the hybrid materials S1d, S2d, S3d, S4d and S5d. These dye-containing solids are the signaling reporters. Their sensing ability towards a family of carboxylates, namely acetate, citrate, lactate, succinate, oxalate, tartrate, malate, mandelate, glutamate and certain nucleotides, has been studied in pure water at pH,7.5 (Hepes, 0.01,mol,dm,3). In the sensing protocol, a particular analyte may be bonded preferentially by the nanoscopic functionalized pocket, leading to delivery of the dye to the solution and resulting in colorimetric detection of the guest. The response to a given anion depends on the characteristics of the binding pockets and the specific interaction of the anion with the binding groups in the mesopores. We believe that the possibility of using a wide variety of mesoporous supports that can easily be functionalized with anion-binding sites, combined with suitable dyes as indicators, make this approach significant for opening new perspectives in the design of chromogenic assays for anion detection in pure water. [source]