Home About us Contact | |||
Mesoderm
Kinds of Mesoderm Terms modified by Mesoderm Selected AbstractsSecond lineage of heart forming region provides new understanding of conotruncal heart defectsCONGENITAL ANOMALIES, Issue 1 2010Yuji Nakajima ABSTRACT Abnormal heart development causes various congenital heart defects. Recent cardiovascular biology studies have elucidated the morphological mechanisms involved in normal and abnormal heart development. The primitive heart tube originates from the lateral-most part of the heart forming mesoderm and mainly gives rise to the left ventricle. Then, during the cardiac looping, the outflow tract is elongated by the addition of cardiogenic cells from the both pharyngeal and splanchnic mesoderm (corresponding to anterior and secondary heart field, respectively), which originate from the mediocaudal region of the heart forming mesoderm and are later located anteriorly (rostrally) to the dorsal region of the heart tube. Therefore, the heart progenitors that contribute to the outflow tract region are distinct from those that form the left ventricle. The knowledge that there are two different lineages of heart progenitors in the four-chambered heart provides new understanding of the morphological and molecular etiology of conotruncal heart defects. [source] Understanding heart development and congenital heart defects through developmental biology: A segmental approachCONGENITAL ANOMALIES, Issue 4 2005Masahide Sakabe ABSTRACT The heart is the first organ to form and function during development. In the pregastrula chick embryo, cells contributing to the heart are found in the postero-lateral epiblast. During the pregastrula stages, interaction between the posterior epiblast and hypoblast is required for the anterior lateral plate mesoderm (ALM) to form, from which the heart will later develop. This tissue interaction is replaced by an Activin-like signal in culture. During gastrulation, the ALM is committed to the heart lineage by endoderm-secreted BMP and subsequently differentiates into cardiomyocyte. The right and left precardiac mesoderms migrate toward the ventral midline to form the beating primitive heart tube. Then, the heart tube generates a right-side bend, and the d-loop and presumptive heart segments begin to appear segmentally: outflow tract (OT), right ventricle, left ventricle, atrioventricular (AV) canal, atrium and sinus venosus. T-box transcription factors are involved in the formation of the heart segments: Tbx5 identifies the left ventricle and Tbx20 the right ventricle. After the formation of the heart segments, endothelial cells in the OT and AV regions transform into mesenchyme and generate valvuloseptal endocardial cushion tissue. This phenomenon is called endocardial EMT (epithelial-mesenchymal transformation) and is regulated mainly by BMP and TGF,. Finally, heart septa that have developed in the OT, ventricle, AV canal and atrium come into alignment and fuse, resulting in the completion of the four-chambered heart. Altered development seen in the cardiogenetic process is involved in the pathogenesis of congenital heart defects. Therefore, understanding the molecular nature regulating the ,nodal point' during heart development is important in order to understand the etiology of congenital heart defects, as well as normal heart development. [source] Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryosDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2009Christina F. Leung Localized Ca2+ signals were consistently visualized in the formed somites of intact zebrafish embryos during the early segmentation period. Unlike the regular process of somitogenesis, these signals were stochastic in nature with respect to time and location. They did, however, occur predominantly at the medial and lateral boundaries within the formed somites. Embryos were treated with modulators of [Ca2+]i to explore the signal generation mechanism and possible developmental function of the stochastic transients. Blocking elements in the phosphoinositol pathway eliminated the stochastic signals but had no obvious effect, stochastic or otherwise, on the formed somites. Such treatments did, however, result in the subsequently formed somites being longer in the mediolateral dimension. Targeted uncaging of buffer (diazo-2) or Ca2+ (NP-ethyleneglycoltetraacetic acid [EGTA]) in the presomitic mesoderm, resulted in a regular mediolateral lengthening and shortening, respectively, of subsequently formed somites. These data suggest a requirement for IP3 receptor-mediated Ca2+ release during convergence cell movements in the presomitic mesoderm, which appears to have a distinct function from that of the IP3 receptor-mediated stochastic Ca2+ signaling in the formed somites. [source] Activation of Tolloid-like 1 gene expression by the cardiac specific homeobox gene Nkx2,5DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2009Inna Sabirzhanova Mammalian Tolloid-like 1 (Tll-1) is a pleiotropic metalloprotease that is expressed by a small subset of cells within the precardiac mesoderm and is necessary for proper heart development. Following heart tube formation Tll-1 is expressed by the endocardium and regions of myocardium overlying the region of the muscular interventricular septum. Mutations in Tll-1 lead to embryonic lethality due to cardiac defects. We demonstrate that the Tll-1 promoter contains Nkx2,5 binding sites and that the Tll-1 promoter is activated by and directly binds Nkx2,5. Tll-1 expression is ablated by a dominant negative Nkx2,5 or by mutation of the Nkx2,5 binding sites within the Tll-1 promoter. In vivo, Tll-1 expression is decreased in the hearts of Nkx2,5 knockout embryos when compared with hemizygous and wild-type embryos. These results show that Nkx2,5 is a direct activator of Tll-1 expression and provide insight into the mechanism of the defects found in both the Tll-1 and Nkx2,5 knockout mice. [source] Induction of initial heart ,-actin, smooth muscle ,-actin, in chick pregastrula epiblast: The role of hypoblast and fibroblast growth factor-8DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2008Hiroko Matsui During heart development at the gastrula stage, inhibition of bone morphogenetic protein (BMP) activity affects the heart specification but does not impair the expression of smooth muscle , -actin (SMA), which is first expressed in the heart mesoderm and recruited into initial heart myofibrils. Interaction of tissues between posterior epiblast and hypoblast at the early blastula stage is necessary to induce the expression of SMA, in which Nodal and Chordin are thought to be involved. Here we investigated the role of fibroblast growth factor-8 (FGF8) in the expression of SMA. In situ hybridization and reverse transcription,polymerase chain reaction showed that Fgf8b is expressed predominantly in the nascent hypoblast. Anti-FGF8b antibody inhibited the expression of SMA, cTNT, and Tbx5, which are BMP-independent heart mesoderm/early cardiomyocyte genes, but not Brachyury in cultured posterior blastoderm, and combined FGF8b and Nodal, but neither factor alone induced the expression of SMA in association with heart specific markers in cultured epiblast. Although FGF8b did not induce the upregulation of phospho-Smad2, anti-FGF8b properties suppressed phospho-Smad2 in cultured blastoderm. FGF8b was able to reverse the BMP-induced inhibition of cardiomyogenesis. The results suggest that FGF8b acts on the epiblast synergistically with Nodal at the pregastrula stage and may play a role in the expression of SMA during early cardiogenesis. [source] Busulfan-induced central polydactyly, syndactyly and cleft hand or foot: A common mechanism of disruption leads to divergent phenotypesDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2007Takuji Naruse The prevalence of clinical phenotypes that exhibit combinations of central polydactyly, syndactyly, or cleft hand or foot is higher than would be expected for random independent mutations. We have previously demonstrated that maternal ingestion of a chemotherapeutic agent, busulfan, at embryonic day 11 (E11) induces these defects in various combinations in rat embryo limbs. In an effort to determine the mechanism by which busulfan disrupts digital development, we examined cell death by Nile Blue staining and TdT-mediated dUTP nick end labeling (TUNEL) assays; we also carried out whole mount in situ hybridization for fibroblast growth factor-8 (Fgf8), bone morphogenetic protein-4 (Bmp4), and sonic hedgehog (Shh) to examine developmental pathways linked to these defects. In busulfan-treated embryos, diffuse cell death was evident in both ectoderm and mesoderm, peaking at E13. The increased cell death leads to regression of Fgf8 in the apical ectodermal ridge (AER) and Bmp4 and Shh in the underlying mesoderm. The subsequent pattern of interdigital apoptosis and cartilage condensation was variably disrupted. These results suggest that busulfan manifests its teratogenic effects by inducing cell death of both ectoderm and mesoderm, with an associated reduction in tissue and a disruption in the generation of patterning molecules during critical periods of digit specification. [source] Somatic H1 histone accumulation and germ layer determination in amphibian embryosDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 8 2006Reed A. Flickinger The induction of mesoderm and/or endoderm from prospective ectoderm and dorsalization of the marginal zone mesoderm may be linked to inhibition of cell cycling and DNA synthesis in early amphibian embryos. In turn, this may lead to reduction of somatic H1 histone accumulation. A greater number of cell cycles and rounds of DNA synthesis characterizes the induction of neural tissue. This is correlated with an increase of somatic H1 histone accumulation. The number of rounds of DNA replication may regulate the level of H1 histone accumulation and this may have a role in germ layer determination. [source] Transgenic analysis of the medaka mesp-b enhancer in somitogenesisDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2006Harumi Terasaki Somitogenesis is a critical step during the formation of metameric structures in vertebrates. Recent studies in mouse, chick, zebrafish and Xenopus have revealed that several factors, such as T-box genes, Notch/Delta, Wnt, retinoic acid and FGF signaling, are involved in the specification of nascent somites. By interacting with these pathways, the Mesp2-like bHLH transcription factors are transiently expressed in the anterior presomitic mesoderm and play a crucial role in somite formation. The regulatory mechanisms of Mesp2 and its related genes during somitogenesis have been studied in mouse and Xenopus. However, the precise mechanism that regulates the transcriptional activity of Mesp2 has yet to be determined. In our current report, we identify the essential enhancer element of medaka mesp-b, an orthologue of mouse Mesp2, using transgenic techniques and embryo manipulation. Our results demonstrate that a region of approximately 2.8 kb, upstream of the mesp-b gene, is responsible for both the initiation and anterior localization of mesp-b transcription within a somite primordium. Furthermore, putative motifs for both T-box transcription factors and Notch/Delta signaling are present in this enhancer region and are essential for activity. [source] Endoderm development in vertebrates: fate mapping, induction and regional specificationDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2005Kimiko Fukuda The formation of the vertebrate body plan begins with the differentiation of cells into three germ layers: ectoderm, mesoderm and endoderm. Cells in the endoderm give rise to the epithelial lining of the digestive tract, associated glands and respiratory system. One of the fundamental problems in developmental biology is to elucidate how these three primary germ layers are established from the homologous population of cells in the early blastomere. To address this question, ectoderm and mesoderm development have been extensively analyzed, but study of endoderm development has only begun relatively recently. In this review, we focus on the ,where', ,when' and ,how' of endoderm development in four vertebrate model organisms: the zebrafish, Xenopus, chick and mouse. We discuss the classical fate mapping of the endoderm and the more recent progress in characterizing its induction, segregation and regional specification. [source] ,-Microseminoprotein-related molecules may participate in formation of the mesoderm in the chick embryoDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2003Aditi Karandikar It has previously been shown that human ,-microseminoprotein enhances development of mesodermal structures in the chick embryo. The present study was carried out to elucidate the mechanism of action of human ,-microseminoprotein in the chick embryo. ,-Microseminoprotein brought about significant modulation of expression of Brachyury in gastrulating embryos. In approximately 50% of the treated embryos, Brachyury expression was enhanced around the Hensen's node. These cells not only expressed higher levels of Brachyury, but also appeared to switch off Brachyury expression prematurely, postinvagination. The spatial modulation of Brachyury is not clearly reflected in the northern blots, indicating that ,-microseminoprotein treatment results in redistribution of available transcripts or that the upregulation is compensated for by early switching off of Brachyury postinvagination. Because higher levels of Brachyury during gastrulation are believed to result in early exit of cells from the primitive streak, ,-microseminoprotein treatment appeared to have stimulated morphogenetic movements by upregulating Brachyury around the Hensen's node. This deduction was confirmed by scanning electron microscopic analysis that showed that altered morphogenetic movements accompany modulation of Brachyury. The specific responses elicited by ,-microseminoprotein indicate presence of a structurally related molecule in the chick. By western blotting, similar molecules were indeed detected in the chicken seminal plasma and in chick embryos. These data strongly suggest that ,-microseminoprotein-related molecule(s) participates in mesoderm formation in the chick embryo. [source] Involvement of BMP-4/msx-1 and FGF pathways in neural induction in the Xenopus embryoDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2000Akihiko Ishimura The msx homeodomain protein is a downstream transcription factor of the bone morphogenetic protein (BMP)-4 signal and a key regulator for neural tissue differentiation. Xmsx-1 antagonizes the dorsal expression of noggin and cerberus, as revealed by in situ hybridization and reverse transcription,polymerase chain reaction assays. In animal cap explants, Xmsx-1 and BMP-4 inhibit the neural tissue differentiation induced by noggin or cerberus. A loss-of-function study using the Xmsx-1/VP-16 fusion construct indicated that neural tissue formation was directly induced by the injection of fusion ribonucleic acid, although the expression of neural cell adhesion molecule (N-CAM) in the cap was less than that in the cap injected with tBR or noggin. In contrast to the single cap assay, unexpectedly, both BMP-4 and Xmsx-1 failed to inhibit neurulation in the ectodermal explants to which the organizer mesoderm was attached. The results of cell-lineage tracing experiments indicated that the neural cells were differentiated from the animal pole tissue where the excess RNA of either BMP-4 or Xmsx-1 was injected, whereas notochord was differentiated from the organizer mesoderm. Neural tissue differentiated from BMP-4 -injected ectodermal cells strongly expressed posterior neural markers, such as hoxB9 and krox20, suggesting that the posterior neural cells differentiated regardless of the existence of the BMP signal. The introduction of a dominant-negative form of the fibroblast growth factor (FGF) receptor (XFD) into the ectodermal cells drastically reduced the expression of pan and posterior neural markers (N-CAM and hoxB-9) if co-injected with BMP-4 RNA, although XFD alone at the same dose did not shut down the expression of N-CAM in the combination explants. Therefore, it is proposed that an FGF-related molecule was involved in the direct induction of posterior neural tissue in the inducing signals from the organizer mesoderm in vivo. [source] In vitro organogenesis of pancreas in Xenopus laevis dorsal lips treated with retinoic acidDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2000Naomi Moriya Dorsal lips of Xenopus laevis may differentiate into pancreas after treatment with retinoic acid in vitro. The dorsal lip region is fated to be dorsal mesoderm and anterior endoderm. Dorsal lip cells isolated from stage 10 early gastrula differentiate into tissues such as notochord, muscle and pharynx. However, in the present study, dorsal lips treated with 10,4M retinoic acid for 3 h differentiated into pancreas-like structures accompanied by notochord and thick endodermal epithelium. Sections of the explants showed that some cells gathered and formed an acinus-like structure as observed under microscopes. In addition to the morphological changes, expressions of the pancreas-specific molecular markers, XlHbox8 and insulin, were induced in retinoic acid-treated dorsal lip explants. Therefore, it is suggested that retinoic acid may induce the dorsal lip cells to differentiate into a functional pancreas. However, continuous treatment with retinoic acid did not induce pancreas differentiation at any concentration. Dorsal lips treated with retinoic acid within 5 h after isolation differentiated into pancreas-like cells, while those treated after 15 h or more did not. The present study provided a suitable test system for analyzing pancreas differentiation in early vertebrate development. [source] Comparative expression pattern analysis of the highly conserved chemokines SDF1 and CXCL14 during amniote embryonic developmentDEVELOPMENTAL DYNAMICS, Issue 10 2010Clara García-Andrés Abstract Chemokines are secreted proteins with essential roles in leukocyte trafficking and cell migration during embryogenesis. CXCL14 displays a degree of evolutionary conservation unmatched by any other chemokine except for SDF1(CXCL12). However, its role during embryogenesis has not been studied. Here we describe the expression pattern of mouse and chicken CXCL14 during embryogenesis and compare it with that of SDF1. CXCL14 is widely expressed in embryonic ectoderm and shows a restricted and dynamic expression pattern in paraxial mesoderm, mesonephros, neural tube, and limbs. During limb development, CXCL14 marks a unique connective tissue subset that surrounds developing tendons. Comparison of CXCL14 and SDF1 reveals mostly non-overlapping or complementary expression patterns, suggesting an interactive regulation of developmental processes by these two chemokines. Our study identifies CXCL14 as a novel marker of tendon connective tissue and provides a conceptual framework for the coordinated action of two highly conserved chemokines in embryonic development. Developmental Dynamics 239:2769,2777, 2010. © 2010 Wiley-Liss, Inc. [source] Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesisDEVELOPMENTAL DYNAMICS, Issue 7 2010Jeremy L. Barth Abstract Nkx2.5, a transcription factor implicated in human congenital heart disease, is required for regulation of second heart field (SHF) progenitors contributing to outflow tract (OFT). Here, we define a set of genes (Lrrn1, Elovl2, Safb, Slc39a6, Khdrbs1, Hoxb4, Fez1, Ccdc117, Jarid2, Nrcam, and Enpp3) expressed in SHF containing pharyngeal arch tissue whose regulation is dependent on Nkx2.5. Further investigation shows that Jarid2, which has been implicated in OFT morphogenesis, is a direct target of Nkx2.5 regulation. Jarid2 expression was up-regulated in SHF mesoderm of Nkx2.5-deficient embryos. Chromatin immunoprecipitation analysis showed Nkx2.5 interaction with consensus binding sites in the Jarid2 promoter in pharyngeal arch cells. Finally, Jarid2 promoter activity and mRNA expression levels were down-regulated by Nkx2.5 overexpression. Given the role of Jarid2 as a regulator of early cardiac proliferation, these findings highlight Jarid2 as one of several potential mediators of the critical role played by Nkx2.5 during OFT morphogenesis. Developmental Dynamics 239:2024,2033, 2010. © 2010 Wiley-Liss, Inc. [source] Generation and characterization of a novel neural crest marker allele, Inka1-LacZ, reveals a role for Inka1 in mouse neural tube closureDEVELOPMENTAL DYNAMICS, Issue 4 2010Bethany S. Reid Abstract Previous studies identified Inka1 as a gene regulated by AP-2, in the neural crest required for craniofacial morphogenesis in fish and frog. Here, we extend the analysis of Inka1 function and regulation to the mouse by generating a LacZ knock-in allele. Inka1-LacZ allele expression occurs in the cephalic mesenchyme, heart, and paraxial mesoderm prior to E8.5. Subsequently, expression is observed in the migratory neural crest cells and their derivatives. Consistent with expression of Inka1 in tissues of the developing head during neurulation, a low percentage of Inka1,/, mice show exencephaly while the remainder are viable and fertile. Further studies indicate that AP-2, is not required for Inka1 expression in the mouse, and suggest that there is no significant genetic interaction between these two factors during embryogenesis. Together, these data demonstrate that while the expression domain of Inka1 is conserved among vertebrates, its function and regulation are not. Developmental Dynamics 239:1188,1196, 2010. © 2010 Wiley-Liss, Inc. [source] Xenopus Wnt11b is identified as a potential pronephric inducerDEVELOPMENTAL DYNAMICS, Issue 1 2010Stéphanie Tételin Abstract In this study, we aimed to establish if known wnt signaling molecules could be responsible for inducing early pronephros specification, using a novel and effective in vitro bioassay in Xenopus embryos. Anterior somites have the unique biological activity to signal to unspecified intermediate mesoderm to induce pronephros formation in Xenopus embryos. We have used a molecular candidate gene approach to analyze both canonical and noncanonical wnt expression in isolated anterior and posterior somites and dissected presumptive pronephros, pronephric anlagen, and pronephros from stage 12.5,35 embryos. We have identified potential candidate wnt genes expressed in the right time and place to specify pronephric development. These candidates were then directly tested in an in vitro pronephrogenesis assay based on Holtfreter sandwich cultures. Results revealed that noncanonical wnt11b and wnt11 can induce pronephros formation in vitro. Loss-of-function experiments confirmed that these genes are necessary for normal pronephros development. Developmental Dynamics 239:148,159, 2010. © 2009 Wiley-Liss, Inc. [source] Promoter analysis of ventricular myosin heavy chain (vmhc) in zebrafish embryosDEVELOPMENTAL DYNAMICS, Issue 7 2009Daqing Jin Abstract In zebrafish, ventricular myosin heavy chain (vmhc) gene is initially expressed at the anterior lateral mesoderm and thereafter its expression is restricted to the cardiac ventricle. The transcriptional control mechanisms in regulating chamber-specific expression of myosin heavy chains are not well defined. We isolated and analyzed zebrafish vmhc upstream region to examine the spatial and temporal regulation of vmhc using transgenic and transient expression techniques. Promoter deletion analyses defined a basal promoter region sufficient to drive vmhc expression in the ventricle and an upstream fragment necessary for repressing ectopic vmhc expression in the atrium. The transcriptional mechanism that prevents vmhc expression in the atrium is mediated through Nkx2.5 binding elements (NKE). We have further discovered that paired-related homeobox transcriptional factor 2 (Prx2/S8)-like binding elements are required for promoting vmhc expression, and Prrx1b, a Prx-related homeobox protein, participates in the regulation of vmhc expression with other transcriptional factors. Developmental Dynamics 238:1760,1767, 2009. © 2009 Wiley-Liss, Inc. [source] Man1, an inner nuclear membrane protein, regulates left,right axis formation by controlling nodal signaling in a node-independent mannerDEVELOPMENTAL DYNAMICS, Issue 12 2008Akihiko Ishimura Abstract Man1, an inner nuclear membrane protein, regulates transforming growth factor , signaling by interacting with receptor-associated Smads. In Man1 -deficient (Man1,/,) embryos, vascular remodeling is perturbed by misregulation of Smad activity. Here, we show that Man1,/, embryos exhibit abnormal heart morphogenesis including the looping abnormality. We searched for the molecular basis underlying the heart abnormalities and found that the left side-specific genes responsible for left,right (LR) asymmetry, Nodal, Lefty2, and Pitx2, were expressed bilaterally in the lateral plate mesoderm and that their expression was enhanced significantly in mutants. Notably, Lefty1, a marker for the midline barrier, was maintained in Man1,/, mutants. Crossing Man1,/+ with Nodal hypomorphs (Nodalneo/+), in which Nodal signaling in the node is disrupted, to generate double homozygous embryos (Man1,/,; Nodalneo/neo) revealed that the bilateral Nodal was retained in Man1,/,; Nodalneo/neo embryos. These results suggest that Man1 regulates LR asymmetry by controlling Nodal signaling in a node-independent manner. Developmental Dynamics 237:3565,3576, 2008. © 2008 Wiley-Liss, Inc. [source] Semaphorin and neuropilin expression during early morphogenesis of Xenopus laevisDEVELOPMENTAL DYNAMICS, Issue 12 2008Ulrich Koestner Abstract Semaphorins are major regulators of morphogenesis and are involved in a variety of processes ranging from the guidance of cell migration to the development of cancer. Since semaphorins were first characterized as repulsive neuronal guidance cues, their expression has been best documented in the nervous system. However, broader studies are lacking. Here, we describe the expression of 13 members of the semaphorin family and two neuropilin receptors during early Xenopus laevis development. No particular expression pattern defines any of the semaphorin classes, but many are dynamically expressed in distinct areas undergoing morphogenetic cell movements like the developing mesoderm and the migrating neural crest. Furthermore, the complementary expression patterns of Sema3A/Nrp1 and Sema3F/Nrp2 are maintained across hundreds of millions of years, possibly indicating a conserved role in the guidance of migrating neural crest cells. Developmental Dynamics 237:3853,3863, 2008. © 2008 Wiley-Liss, Inc. [source] The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in XenopusDEVELOPMENTAL DYNAMICS, Issue 5 2008Russell B. Fletcher Abstract FGF signaling is important for the formation of mesoderm in vertebrates, and when it is perturbed in Xenopus, most trunk and tail mesoderm fails to form. Here we have further dissected the activities of FGF in patterning the embryo by addressing its inductive and maintenance roles. We show that FGF signaling is necessary for the establishment of xbra expression in addition to its well-characterized role in maintaining xbra expression. The role of FGF signaling in organizer formation is not clear in Xenopus. We find that FGF signaling is essential for the initial specification of paraxial mesoderm but not for activation of several pan-mesodermal and most organizer genes; however, early FGF signaling is necessary for the maintenance of organizer gene expression into the neurula stage. Inhibition of FGF signaling prevents VegT activation of specific mesodermal transcripts. These findings illuminate how FGF signaling contributes to the establishment of distinct types of mesoderm. Developmental Dynamics 237:1243-1254, 2008. © 2008 Wiley-Liss, Inc. [source] Expression pattern of Popdc2 during mouse embryogenesis and in the adultDEVELOPMENTAL DYNAMICS, Issue 3 2008Alexander Froese Abstract The Popdc2 gene is a member of the Popeye domain containing gene family encoding membrane proteins with prominent expression in striated and smooth muscle tissue. After introducing a LacZ reporter gene into the Popdc2 locus, expression was studied during embryonic development and postnatal life. At embryonic day (E) 7.5, expression was present in cardiac and extraembryonic mesoderm. At E10.5, expression was found in heart, somites, and mesothelial cells lining the coelom. At E12.5, expression was present in the coelomic mesothelium, pericardial and myocardial layer of the heart, skeletal muscle, bladder, gut, and umbilical vessels. Postnatal expression was found in cardiac and skeletal muscle and in the smooth muscle layer of colon, rectum, and bladder. In the stomach, Popdc2 was exclusively present in the pyloric epithelium. In conclusion, Popdc2 is expressed in various muscle and nonmuscle cell types during embryonic development and in postnatal life. Developmental Dynamics 237:780,787, 2008. © 2008 Wiley-Liss, Inc. [source] Extrinsic versus intrinsic cues in avian paraxial mesoderm patterning and differentiationDEVELOPMENTAL DYNAMICS, Issue 9 2007Ingo Bothe Abstract Somitic and head mesoderm contribute to cartilage and bone and deliver the entire skeletal musculature. Studies on avian somite patterning and cell differentiation led to the view that these processes depend solely on cues from surrounding tissues. However, evidence is accumulating that some developmental decisions depend on information within the somitic tissue itself. Moreover, recent studies established that head and somitic mesoderm, though delivering the same tissue types, are set up to follow their own, distinct developmental programmes. With a particular focus on the chicken embryo, we review the current understanding of how extrinsic signalling, operating in a framework of intrinsically regulated constraints, controls paraxial mesoderm patterning and cell differentiation. Developmental Dynamics 236:2397,2409, 2007. © 2007 Wiley-Liss, Inc. [source] Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signalingDEVELOPMENTAL DYNAMICS, Issue 6 2007Albert Goldbeter Abstract The establishment of thresholds along morphogen gradients in the embryo is poorly understood. Using mathematical modeling, we show that mutually inhibitory gradients can generate and position sharp morphogen thresholds in the embryonic space. Taking vertebrate segmentation as a paradigm, we demonstrate that the antagonistic gradients of retinoic acid (RA) and Fibroblast Growth Factor (FGF) along the presomitic mesoderm (PSM) may lead to the coexistence of two stable steady states. Here, we propose that this bistability is associated with abrupt switches in the levels of FGF and RA signaling, which permit the synchronized activation of segmentation genes, such as mesp2, in successive cohorts of PSM cells in response to the segmentation clock, thereby defining the future segments. Bistability resulting from mutual inhibition of RA and FGF provides a molecular mechanism for the all-or-none transitions assumed in the "clock and wavefront" somitogenesis model. Given that mutually antagonistic signaling gradients are common in development, such bistable switches could represent an important principle underlying embryonic patterning. Developmental Dynamics 236:1495,1508, 2007. © 2007 Wiley-Liss, Inc. [source] Nuclear receptor NR5A2 is required for proper primitive streak morphogenesisDEVELOPMENTAL DYNAMICS, Issue 12 2006Cassandre Labelle-Dumais Abstract NR5A2, also known as liver receptor homologue 1 (LRH-1) and fetoprotein transcription factor (FTF), is an orphan nuclear receptor involved in the regulation of cholesterol metabolism and steroidogenesis in the adult. NR5A2 was also shown to be expressed during early mouse embryogenesis. Consistent with its early expression pattern, a targeted disruption of this gene leads to embryonic lethality around the gastrulation period. To characterize the embryonic phenotype resulting from NR5A2 loss of function, we undertook morphological and marker gene analyses and showed that NR5A2,/, embryos display growth retardation, epiblast disorganization, a mild embryonic,extraembryonic constriction, as well as abnormal thickening of the proximo-posterior epiblast. We demonstrated that, although initial specification of the anterior,posterior axis occurred in the absence of NR5A2, primitive streak formation was impaired and neither embryonic nor extraembryonic mesoderm was generated. Moreover, although the visceral endoderm does not show major morphological abnormalities in NR5A2,/, embryos, a decrease in the expression level of HNF4 and GATA4 was observed. Aggregation experiments demonstrated that, in the presence of wild-type tetraploid cells, NR5A2 mutant cells in the epiblast are capable of undergoing normal gastrulation. Therefore, our results suggest a requirement for NR5A2 in extraembryonic tissues and identify a novel role of this gene in proper primitive streak morphogenesis. Developmental Dynamics 235:3359,3369, 2006. © 2006 Wiley-Liss, Inc. [source] Regulation of the Neurofibromatosis 2 gene promoter expression during embryonic developmentDEVELOPMENTAL DYNAMICS, Issue 10 2006Elena M. Akhmametyeva Abstract Mutations in the Neurofibromatosis 2 (NF2) gene are associated with predisposition to vestibular schwannomas, spinal schwannomas, meningiomas, and ependymomas. Presently, how NF2 is expressed during embryonic development and in the tissues affected by neurofibromatosis type 2 (NF2) has not been well defined. To examine NF2 expression in vivo, we generated transgenic mice carrying a 2.4-kb NF2 promoter driving ,-galactosidase (,-gal) with a nuclear localization signal. Whole-mount embryo staining revealed that the NF2 promoter directed ,-gal expression as early as embryonic day E5.5. Strong expression was detected at E6.5 in the embryonic ectoderm containing many mitotic cells. ,-gal staining was also found in parts of embryonic endoderm and mesoderm. The ,-gal staining pattern in the embryonic tissues was corroborated by in situ hybridization analysis of endogenous Nf2 RNA expression. Importantly, we observed strong NF2 promoter activity in the developing brain and in sites containing migrating cells including the neural tube closure, branchial arches, dorsal aorta, and paraaortic splanchnopleura. Furthermore, we noted a transient change of NF2 promoter activity during neural crest cell migration. While little ,-gal activity was detected in premigratory neural crest cells at the dorsal ridge region of the neural fold, significant activity was seen in the neural crest cells already migrating away from the dorsal neural tube. In addition, we detected considerable NF2 promoter activity in various NF2-affected tissues such as acoustic ganglion, trigeminal ganglion, spinal ganglia, optic chiasma, the ependymal cell-containing tela choroidea, and the pigmented epithelium of the retina. The NF2 promoter expression pattern during embryogenesis suggests a specific regulation of the NF2 gene during neural crest cell migration and further supports the role of merlin in cell adhesion, motility, and proliferation during development. Developmental Dynamics 235:2771,2785, 2006. © 2006 Wiley-Liss, Inc. [source] Cloning of vertebrate Protogenin (Prtg) and comparative expression analysis during axis elongationDEVELOPMENTAL DYNAMICS, Issue 10 2006Christine Vesque Abstract A murine cDNA encoding Protogenin, which belongs to the DCC/Neogenin family, was cloned in a screen performed to identify novel cDNAs regionally expressed in the neural plate. Isolation of the putative zebrafish orthologues allowed a comparative analysis of the expression patterns of Protogenin genes during embryogenesis in different vertebrate species. From mid-gastrulation to early somite stages, Protogenin expression is restricted to posterior neural plate and mesoderm, with an anterior limit at the level of the rhombencephalon in mouse, chicken, and zebrafish. During somitogenesis, the expression profiles in the three species share features in the neural tube but present also species-specific characteristics. The initiation of Protogenin expression just before somitogenesis and its maintenance in the neural tube and paraxial mesoderm during this process suggest a conserved role in axis elongation. Developmental Dynamics 235:2836,2844, 2006. © 2006 Wiley-Liss, Inc. [source] Xnr2 and Xnr5 unprocessed proteins inhibit Wnt signaling upstream of dishevelledDEVELOPMENTAL DYNAMICS, Issue 4 2005Yasuko Onuma Abstract Nodal and Nodal-related proteins activate the Activin-like signal pathway and play a key role in the formation of mesoderm and endoderm in vertebrate development. Recent studies have shown additional activities of Nodal-related proteins apart from the canonical Activin-like signal pathway. Here we report a novel function of Nodal-related proteins using cleavage mutants of Xenopus nodal-related genes (cmXnr2 and cmXnr5), which are known to be dominant-negative inhibitors of nodal family signaling. cmXnr2 and cmXnr5 inhibited both BMP signaling and Wnt signaling without activating the Activin-like signal in animal cap assays. Pro region construct of Xnr2 and Xnr5 did not inhibit Xwnt8, and pro/mature region chimera mutant cmActivin - Xnr2 and cmActivin- Xnr5 also did not inhibit Xwnt8 activity. These results indicate that the pro domains of Xnr2 and Xnr5 are necessary, but not sufficient, for Wnt inhibition, by Xnr family proteins. In addition, Western blot analysis and immunohistochemistry analysis revealed that the unprocessed Xnr5 protein is stably produced and secreted as effectively as mature Xnr5 protein, and that the unprocessed Xnr5 protein diffused in the extracellular space. These results suggest that unprocessed Xnr2 and Xnr5 proteins may be involved in inhibiting both BMP and Wnt signaling and are able to be secreted to act on somewhat distant target cells, if these are highly produced. Developmental Dynamics 234:900,910, 2005. © 2005 Wiley-Liss, Inc. [source] Cells of all somitic compartments are determined with respect to segmental identityDEVELOPMENTAL DYNAMICS, Issue 4 2005Marlyse Dieuguie Fomenou Abstract Development of somite cells is orchestrated by two regulatory processes. Differentiation of cells from the various somitic compartments into different anlagen and tissues is regulated by extrinsic signals from neighboring structures such as the notochord, neural tube, and surface ectoderm. Morphogenesis of these anlagen to form specific structures according to the segmental identity of each somite is specified by segment-specific positional information, based on the Hox -code. It has been shown that following experimental rotation of presomitic mesoderm or newly formed somites, paraxial mesodermal cells adapt to the altered signaling environment and differentiate according to their new orientation. In contrast, presomitic mesoderm or newly formed somites transplanted to different segmental levels keep their primordial segmental identity and form ectopic structures according to their original position. To determine whether all cells of a segment, including the dorsal and ventral compartment, share the same segmental identity, presomitic mesoderm or newly formed somites were rotated and transplanted from thoracic to cervical level. These experiments show that cells from all compartments of a segment are able to interpret extrinsic local signals correctly, but form structures according to their original positional information and maintain their original Hox expression in the new environment. Developmental Dynamics 233:1386,1393, 2005. © 2005 Wiley-Liss, Inc. [source] Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevisDEVELOPMENTAL DYNAMICS, Issue 3 2005Teun P. De Boer Abstract Connexin-containing gap junctions play an essential role in vertebrate development. More than 20 connexin isoforms have been identified in mammals. However, the number identified in Xenopus trails with only six isoforms described. Here, identification of a new connexin isoform from Xenopus laevis is described. Connexin40.4 was found by screening expressed sequence tag databases and carrying out polymerase chain reaction on genomic DNA. This new connexin has limited amino acid identity with mammalian (<50%) connexins, but conservation is higher (,62%) with fish. During Xenopus laevis development, connexin40.4 was first expressed after the mid-blastula transition. There was prominent expression in the presomitic paraxial mesoderm and later in the developing somites. In adult frogs, expression was detected in kidney and stomach as well as in brain, heart, and skeletal muscle. Ectopic expression of connexin40.4 in HEK293 cells, resulted in formation of gap junction like structures at the cell interfaces. Similar ectopic expression in neural N2A cells resulted in functional electrical coupling, displaying mild, asymmetric voltage dependence. We thus cloned a novel connexin from Xenopus laevis, strongly expressed in developing somites, with no apparent orthologue in mammals. Developmental Dynamics 233:864,871, 2005. © 2005 Wiley-Liss, Inc. [source] Studies on epidermal growth factor receptor signaling in vertebrate limb patterningDEVELOPMENTAL DYNAMICS, Issue 2 2005Minoru Omi Abstract The epidermal growth factor receptor (EGFR) regulates multiple patterning events in Drosophila limb development, but its role in vertebrate limb morphogenesis has received little attention. The EGFR and several of its ligands are expressed in developing vertebrate limbs in manners consistent with potential patterning roles. To gain insight into functions of EGFR signaling in vertebrate limb development, we expressed a constitutively active EGFR in developing chick limbs in ovo. Expression of activated EGFR causes pre- and postaxial polydactyly, including mirror-image,type digit duplication, likely due to induction of ectopic expression and/or modulation of genes involved in anterior,posterior (AP) patterning such as Sonic hedgehog (Shh), dHand, Patched (Ptc), Gli3, Hoxd13, Hoxd11, bone morphogenetic protein 2 (Bmp2), Gremlin, and FGF4. Activation of EGFR signaling dorsalizes the limb and alters expression of the dorsal,ventral (DV) patterning genes Wnt7a, Lmx, and En1. Ectopic and/or extended FGF8 expressing apical ectodermal ridges (AERs) are also seen. Interdigital regression is inhibited and the digits fail to separate, leading to syndactyly, likely due to antiapoptotic and pro-proliferative effects of activated EGFR signaling on limb mesoderm, and/or attenuation of interdigital Bmp4 expression. These findings suggest potential roles for EGFR signaling in AP and DV patterning, AER formation, and cell survival during limb morphogenesis. Developmental Dynamics 233:288,300, 2005. © 2005 Wiley-Liss, Inc. [source] |