Mesh Adaptation (mesh + adaptation)

Distribution by Scientific Domains


Selected Abstracts


Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2007
Stefano Secchi
Abstract This paper presents a numerical procedure for cohesive hydraulic fracture problems in a multiphase system. The transient problem of crack nucleation and/or advancement, with the ensuing topological changes, is solved by successive remeshing and projection of the field variables required in the time marching scheme. The projection is directly applied to the nodal vector of the previous step and is performed by means of a suitable mapping operator which acts on nodal forces and fluxes. This hence ensures ,a priori' the local fulfilment of the balance equations (equilibrium and mass conservation). The resulting procedure is computationally simple; however checks have to be made on its capability of conserving strain energy of the system. The latter property together with the accuracy of the solution is heuristically assessed on the basis of numerical benchmarks. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Adaptive mesh technique for thermal,metallurgical numerical simulation of arc welding processes

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2008
M. Hamide
Abstract A major problem arising in finite element analysis of welding is the long computer times required for a complete three-dimensional analysis. In this study, an adaptative strategy for coupled thermometallurgical analysis of welding is proposed and applied in order to provide accurate results in a minimum computer time. The anisotropic adaptation procedure is controlled by a directional error estimator based on local interpolation error and recovery of the second derivatives of different fields involved in the finite element calculation. The methodology is applied to the simulation of a gas,tungsten-arc fusion line processed on a steel plate. The temperature field and the phase distributions during the welding process are analyzed by the FEM method showing the benefits of dynamic mesh adaptation. A significant increase in accuracy is obtained with a reduced computational effort. Copyright © 2007 John Wiley & Sons, Ltd. [source]


A practical determination strategy of optimal threshold parameter for matrix compression in wavelet BEM

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 2 2003
Kazuhiro Koro
Abstract A practical strategy is developed to determine the optimal threshold parameter for wavelet-based boundary element (BE) analysis. The optimal parameter is determined so that the amount of storage (and computational work) is minimized without reducing the accuracy of the BE solution. In the present study, the Beylkin-type truncation scheme is used in the matrix assembly. To avoid unnecessary integration concerning the truncated entries of a coefficient matrix, a priori estimation of the matrix entries is introduced and thus the truncated entries are determined twice: before and after matrix assembly. The optimal threshold parameter is set based on the equilibrium of the truncation and discretization errors. These errors are estimated in the residual sense. For Laplace problems the discretization error is, in particular, indicated with the potential's contribution ,c, to the residual norm ,R, used in error estimation for mesh adaptation. Since the normalized residual norm ,c,/,u, (u: the potential components of BE solution) cannot be computed without main BE analysis, the discretization error is estimated by the approximate expression constructed through subsidiary BE calculation with smaller degree of freedom (DOF). The matrix compression using the proposed optimal threshold parameter enables us to generate a sparse matrix with O(N1+,) (0,,<1) non-zero entries. Although the quasi-optimal memory requirements and complexity are not attained, the compression rate of a few per cent can be achieved for N,1000. Copyright © 2003 John Wiley & Sons, Ltd. [source]


On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2009
Y. Bourgault
Abstract This paper describes the use of an a posteriori error estimator to control anisotropic mesh adaptation for computing inviscid compressible flows. The a posteriori error estimator and the coupling strategy with an anisotropic remesher are first introduced. The mesh adaptation is controlled by a single-parameter tolerance (TOL) in regions where the solution is regular, whereas a condition on the minimal element size hmin is enforced across solution discontinuities. This hmin condition is justified on the basis of an asymptotic analysis. The efficiency of the approach is tested with a supersonic flow over an aircraft. The evolution of a mesh adaptation/flow solution loop is shown, together with the influence of the parameters TOL and hmin. We verify numerically that the effect of varying hmin is concordant with the conclusions of the asymptotic analysis, giving hints on the selection of hmin with respect to TOL. Finally, we check that the results obtained with the a posteriori error estimator are at least as accurate as those obtained with anisotropic a priori error estimators. All the results presented can be obtained using a standard desktop computer, showing the efficiency of these adaptative methods. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Two-dimensional anisotropic Cartesian mesh adaptation for the compressible Euler equations

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2004
W. A. Keats
Abstract Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for transient compressible flow. This technique, originally developed for laminar incompressible flow, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper, the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A parallel cell-based DSMC method on unstructured adaptive meshes

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2004
Min Gyu Kim
Abstract A parallel DSMC method based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows on PC-clusters. Parallel computation is made by decomposing the computational domain into several subdomains. Dynamic load balancing between processors is achieved based on the number of simulation particles and the number of cells allocated in each subdomain. Adjustment of cell size is also made through mesh adaptation for the improvement of solution accuracy and the efficient usage of meshes. Applications were made for a two-dimensional supersonic leading-edge flow, the axi-symmetric Rothe's nozzle, and the open hollow cylinder flare flow for validation. It was found that the present method is an efficient tool for the simulation of rarefied gas flows on PC-based parallel machines. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The direct simulation Monte Carlo method using unstructured adaptive mesh and its application

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2002
J.-S. Wu
Abstract The implementation of an adaptive mesh-embedding (h-refinement) scheme using unstructured grid in two-dimensional direct simulation Monte Carlo (DSMC) method is reported. In this technique, local isotropic refinement is used to introduce new mesh where the local cell Knudsen number is less than some preset value. This simple scheme, however, has several severe consequences affecting the performance of the DSMC method. Thus, we have applied a technique to remove the hanging node, by introducing the an-isotropic refinement in the interfacial cells between refined and non-refined cells. Not only does this remedy increase a negligible amount of work, but it also removes all the difficulties presented in the originals scheme. We have tested the proposed scheme for argon gas in a high-speed driven cavity flow. The results show an improved flow resolution as compared with that of un-adaptive mesh. Finally, we have used triangular adaptive mesh to compute a near-continuum gas flow, a hypersonic flow over a cylinder. The results show fairly good agreement with previous studies. In summary, the proposed simple mesh adaptation is very useful in computing rarefied gas flows, which involve both complicated geometry and highly non-uniform density variations throughout the flow field. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Anisotropic mesh adaptation for numerical solution of boundary value problems

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 4 2004
Vít Dolej
Abstract We present an efficient mesh adaptation algorithm that can be successfully applied to numerical solutions of a wide range of 2D problems of physics and engineering described by partial differential equations. We are interested in the numerical solution of a general boundary value problem discretized on triangular grids. We formulate a necessary condition for properties of the triangulation on which the discretization error is below the prescribed tolerance and control this necessary condition by the interpolation error. For a sufficiently smooth function, we recall the strategy how to construct the mesh on which the interpolation error is below the prescribed tolerance. Solving the boundary value problem we apply this strategy to the smoothed approximate solution. The novelty of the method lies in the smoothing procedure that, followed by the anisotropic mesh adaptation (AMA) algorithm, leads to the significant improvement of numerical results. We apply AMA to the numerical solution of an elliptic equation where the exact solution is known and demonstrate practical aspects of the adaptation procedure: how to control the ratio between the longest and the shortest edge of the triangulation and how to control the transition of the coarsest part of the mesh to the finest one if the two length scales of all the triangles are clearly different. An example of the use of AMA for the physically relevant numerical simulation of a geometrically challenging industrial problem (inviscid transonic flow around NACA0012 profile) is presented. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004. [source]