Home About us Contact | |||
Mesenchymal Stromal Cells (mesenchymal + stromal_cell)
Kinds of Mesenchymal Stromal Cells Selected AbstractsCell contact interaction between adipose-derived stromal cells and allo-activated T lymphocytesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2009Monique E. Quaedackers Abstract Mesenchymal stromal cells regulate immune cell function via the secretion of soluble factors. Cell membrane interactions between these cell types may play an additional role. Here, we demonstrate that subpopulations of allo-activated T cells are capable of binding to human adipose-derived stromal cells (ASC). The bound T-cell population contained CD8+ T cells and was enriched for CD4,CD8, T cells, whereas the proportion of CD4+ T cells was decreased compared with the non-bound T-cell population. Bound CD4+ T cells had high proliferative activity and increased CD25 and FoxP3 expression. However, they also expressed CD127, excluding regulatory T-cell function. In CD8+ T cells, IL-2 sensitivity, as determined by the analysis of phosphorylated STAT5, was lower in the presence of ASC and even lower in bound cells. In contrast, IL-2-induced phosphorylated STAT5 levels were higher in bound CD4+ T cells than in non-bound CD4+ T cells. Additionally, pro-proliferative TGF-, signalling via endoglin and SMAD1/5/8 phosphorylation was detected in bound CD4+ T cells. Even after prolonged co-culture with ASC, the activated phenotype of bound CD4+ T cells persisted. In conclusion, these results demonstrate that the binding of lymphocytes to ASC represents an immunomodulatory mechanism in which CD8+ T cells are inhibited in their responsiveness to pro-inflammatory stimuli and reactive CD4+ T cells are depleted from the immune response. [source] Repair of transected facial nerve with mesenchymal stromal cells: Histopathologic evidence of superior outcome,THE LARYNGOSCOPE, Issue 11 2009Bulent Satar MD Abstract Objectives/Hypothesis: Despite advanced surgical techniques, clinical results of the transected facial nerve are still far from the desired outcome. Mesenchymal stromal cells (MSCs) were shown to transdifferentiate into Schwann cells and express some growth factors beneficial in peripheral nerve injury. We aimed to document histopathological improvement obtained from application of the homograft bone marrow-derived MSCs immediately after conventional anastomosis of a transected facial nerve branch in rats, and to compare the results with those nerves anastomosed only. Study Design: Animal, prospective, and controlled study. Methods: The study was performed in 15 rats. The right buccal branch was completely transected and repaired with epineural sutures. The right-side anastomosis was additionally treated with MSCs thereafter. The right marginal mandibular branch was kept intact, but in contact with MSCs. The left buccal branch was transected and repaired in a similar fashion except for MSC application. The left-side marginal mandibular branch was left intact. Rats were sacrificed at month 1, 3, and 6. Four branches of each rat were sampled, and nerve segments distal to the anastomosis were histopathologically examined. Results: The examination revealed that intact nerve segments and nerve segments in contact with MSCs had completely normal appearance regardless of the time interval. Samples from the nerves anastomosed and treated with MSCs did better than those nerves anastomosed only in terms of axonal organization and myelin thickness. Conclusions: This preliminary report witnessed beneficial effects of MSCs application onto the injured facial nerve as evidenced by the histopathological examination. Laryngoscope, 2009 [source] Are mesenchymal stromal cells from children resistant to apoptosis?CELL PROLIFERATION, Issue 3 2009H. Dimitriou Objectives:, Mesenchymal stromal cells (MSC) represent a novel cellular candidate in the field of transplantation and tissue regeneration. Their clinical application requires their in vitro expansion. The aim of this study was to assess the effect of conditions that would favour apoptosis, and of long-term expansion, on the characteristics of MSC from children. Materials and methods:, Bone marrow mononuclear cells were cultured for 10 passages (P1,P10). Expression of CD105, CD146, CD95 and apoptosis by 7-amino-actinomycin D staining were evaluated. CFU-F and cell doubling time (DT) were assessed in every passage. Cell-cycle study was performed at P2 and P6. Results:, CFU-F decreased from 38 ± 3.7 at P2 to 9.6 ± 3.2 per 10 MSC/cm2 at P10 and DT increased from 1.93 ± 0.1 (P2) to 6.1 ± 2.45 days (P10). A low percentage of apoptotic (dead) cells was detected at P2 and this did not change until P10. Cells at P2 were at G0/G1 phase, but in advanced passages more cells were in an active state. Induction of apoptosis (addition of anti-Fas agonist antibody) using standard culture conditions, showed a minor effect on MSC survival. Serum deprivation of MSC (up to 72 h) revealed no substantial apoptotic effect while cells retained their tri-lineage differentiation capacity. Conclusions:, We conclude that MSC from children retain their functional characteristics throughout serial passages and remain stable under conditions that usually cause apoptosis. These features render MSC, especially those of early passages, optimal candidates for use in clinical applications. [source] A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs,CYTOMETRY, Issue 3 2009Diana Campioni Abstract Biologic and clinical interest in human mesenchymal stromal cells (hMSC) has risen over the last years, mainly due to their immunosuppressive properties. In this study, we investigated the basis of immunomodulant possible variability using hMSC from different sources (amniotic membrane, chorion, and bone marrow from either healthy subjects or patients with hematological malignancies, HM) and having discordant positivity for several immunological markers. The CD90+ hMSC reduced lymphoproliferative response in phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMC) via sHLA-G and IL-10 up-modulation. On the contrary, hMSC showing a significantly lower expression for CD90 antigen, elicited a lymphoproliferative allogeneic response in PHA/PBMCs without any increase in soluble HLA-G and IL-10 levels. These data seems to suggest that CD90 molecule may be considered a novel predictive marker for hMSC inhibitory ability, and might cooperate with HLA-G molecule in regulating suppressive versus stimulatory properties of hMSC. These results may have clinical implication in either transplantation or in regenerative medicine fields. © 2008 Clinical Cytometry Society [source] Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrowCYTOMETRY, Issue 6 2006Elena A. Jones Abstract Background: To study the biology of rare bone marrow (BM) multipotent mesenchymal stromal cells (MSCs), recognized protocols are needed. Colony-forming unit-fibroblast (CFU-F) assays have historically been used for the enumeration of MSCs. However, the need to isolate and further analyze MSCs requires new strategies based on cell surface markers. The purpose of this work was to verify the phenotype of BM MSCs in vivo and to develop flow cytometry-based methods for their evaluation. Methods: Pre-enrichment with D7-FIB-conjugated microbeads, cell sorting for CD45lowD7-FIB+LNGFR+ cells, and CFU-F assay were used to confirm the phenotype of BM MSCs in vivo. Further phenotypic characterization of MSCs was performed using three-color flow cytometry following pre-enrichment or by direct four-color flow cytometry. The sensitivity of direct flow cytometry/rare event analysis for the accurate enumeration of MSCs was validated using 85 samples from patients with neoplastic BM diseases. Results: In normal BM, a significant correlation was found between the frequencies of CFU-Fs and CD45lowD7-FIB+LNGFR+ cells (n = 19, R = 0.719, P = 0.001). Following cell sorting, ,15% of these cells were clonogenic. The same cells were enriched using LNGFR-based positive selection, CD45/Glycophorin A-based depletion, or plastic adherence. CD45lowD7-FIB+LNGFR+ cells expressed classic makers of cultured MSCs CD73/SH3 and CD105/SH2 and markers of stromal reticular cells CD106/VCAM and alkaline phosphatase. Novel markers were identified including leukemia inhibitory factor receptor and gp130. CD45lowD7-FIB+LNGFR+ cells were increased fourfold in the floating fat fraction of normal BM aspirates. Their frequency was decreased in chronic lymphocytic leukemia (threefold, n = 13, P = 0.049) and chronic myelogenous leukemia (ninefold, n = 11, P = 0.001) compared with that in age-matched controls (n = 26 and n = 31, respectively). Conclusions: This study demonstrates the usefulness of flow cytometry-based methods for the detection, enumeration and further phenotypic analysis of BM MSCs. These findings have broad applications for the future evaluation of BM MSCs in health and disease. © 2006 International Society for Analytical Cytology [source] Intracrine androgenic apparatus in human bone marrow stromal cellsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009Tarvo Sillat Abstract It was suggested that human mesenchymal stromal cells might contain an intracrine enzyme machinery potentially able to synthesize the cell's own supply of dihydrotestosterone (DHT) from dehydroepiandrosterone (DHEA) pro-hormone produced in the adrenal cortex in the reticular zone, which is unique to primates. Indeed, 3,-hydroxysteroid dehydrogenase (3,-HSD) and 5,-reductase enzyme proteins were expressed in resting mesenchymal stromal cells (MSCs) in vitro. However, the ,bridging' enzymes 17,-HSDs, catalysing interconversion between 17,-ketosteroids and 17,-hydroxysteroids, were not found in resting MSCs, but 17,-HSD enzyme protein was induced in a dose-dependent manner by DHEA. Quantitative real-time polymerase chain reactions disclosed that this was mainly due to induction of the isoform 5 catalysing this reaction in ,forward', androgen-bound direction (P < 0.01). This work demonstrates that the MSCs have an intracrine machinery to convert DHEA to DHT if and when challenged by DHEA. DHEA as substrate exerts a positive, feed-forward up-regulation on the 17,-hydroxy steroid dehydrogenase-5, which may imply that DHEA-DHT tailor-making in MSCs is subjected to chronobiological regulation. [source] A subpopulation of mesenchymal stromal cells with high osteogenic potentialJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Hua Liu Abstract Current bone disease therapy with bone marrow-derived mesenchymal stromal cells (MSC) is hampered by low efficiency. Advanced allogeneic studies on well-established mouse genetic and disease models are hindered by difficulties in isolating murine MSC (mMSC). And mMSC prepared from different laboratories exhibit significant heterogeneity. Hence, this study aimed to identify and isolate a sub-population of mMSC at an early passage number with high osteogenic potential. Enrichment of mMSC was achieved by 1-hr silica incubation and negative selection. Approximately 96% of these cells synthesized osteocalcin after 28 days of osteogenic induction in vitro, and displayed a complete dynamic alteration of alkaline phosphatase (ALP) activity with increasing osteogenic maturation and strong mineralization. Moreover, the cells displayed uniform and stable surface molecular profile, long-term survival, fast proliferation in vitro with maintenance of normal karyotype and distinct immunological properties. CD73 was found to be expressed exclusively in osteogenesis but not in adipogenesis. These cells also retained high osteogenic potential upon allogeneic transplantation in an ectopic site by the detection of bone-specific ALP, osteopontin, osteocalcin and local mineralization as early as 12 days after implantation. Hence, these cells may provide a useful source for improving current strategies in bone regenerative therapy, and for characterizing markers defining the putative MSC population. [source] PEDF from mouse mesenchymal stem cell secretome attracts fibroblastsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008Harshini Sarojini Abstract Conditioned medium (secretome) derived from an enriched stem cell culture stimulates chemotaxis of human fibroblasts. These cells are classified as multipotent murine mesenchymal stromal cells (mMSC) by immunochemical analysis of marker proteins. Proteomic analysis of mMSC secretome identifies nineteen secreted proteins, including extracellular matrix structural proteins, collagen processing enzymes, pigment epithelium-derived factor (PEDF) and cystatin C. Immunodepletion and reconstitution experiments show that PEDF is the predominant fibroblast chemoattractant in the conditioned medium, and immunofluorescence microscopy shows strong staining for PEDF in the cytoplasm, at the cell surface, and in intercellular space between mMSCs. This stimulatory effect of PEDF on fibroblast chemotaxis is in contrast to the PEDF-mediated inhibition of endothelial cell migration, reported previously. These differential functional effects of PEDF toward fibroblasts and endothelial cells may serve to program an ordered temporal sequence of scaffold building followed by angiogenesis during wound healing. J. Cell. Biochem. 104: 1793,1802, 2008. © 2008 Wiley-Liss, Inc. [source] DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cellsAGING CELL, Issue 1 2010Simone Bork Summary Within 2,3 months of in vitro culture-expansion, mesenchymal stromal cells (MSC) undergo replicative senescence characterized by cell enlargement, loss of differentiation potential and ultimate growth arrest. In this study, we have analyzed DNA methylation changes upon long-term culture of MSC by using the HumanMethylation27 BeadChip microarray assessing 27 578 unique CpG sites. Furthermore, we have compared MSC from young and elderly donors. Overall, methylation patterns were maintained throughout both long-term culture and aging but highly significant differences were observed at specific CpG sites. Many of these differences were observed in homeobox genes and genes involved in cell differentiation. Methylation changes were verified by pyrosequencing after bisulfite conversion and compared to gene expression data. Notably, methylation changes in MSC were overlapping in long-term culture and aging in vivo. This supports the notion that replicative senescence and aging represent developmental processes that are regulated by specific epigenetic modifications. [source] Repair of transected facial nerve with mesenchymal stromal cells: Histopathologic evidence of superior outcome,THE LARYNGOSCOPE, Issue 11 2009Bulent Satar MD Abstract Objectives/Hypothesis: Despite advanced surgical techniques, clinical results of the transected facial nerve are still far from the desired outcome. Mesenchymal stromal cells (MSCs) were shown to transdifferentiate into Schwann cells and express some growth factors beneficial in peripheral nerve injury. We aimed to document histopathological improvement obtained from application of the homograft bone marrow-derived MSCs immediately after conventional anastomosis of a transected facial nerve branch in rats, and to compare the results with those nerves anastomosed only. Study Design: Animal, prospective, and controlled study. Methods: The study was performed in 15 rats. The right buccal branch was completely transected and repaired with epineural sutures. The right-side anastomosis was additionally treated with MSCs thereafter. The right marginal mandibular branch was kept intact, but in contact with MSCs. The left buccal branch was transected and repaired in a similar fashion except for MSC application. The left-side marginal mandibular branch was left intact. Rats were sacrificed at month 1, 3, and 6. Four branches of each rat were sampled, and nerve segments distal to the anastomosis were histopathologically examined. Results: The examination revealed that intact nerve segments and nerve segments in contact with MSCs had completely normal appearance regardless of the time interval. Samples from the nerves anastomosed and treated with MSCs did better than those nerves anastomosed only in terms of axonal organization and myelin thickness. Conclusions: This preliminary report witnessed beneficial effects of MSCs application onto the injured facial nerve as evidenced by the histopathological examination. Laryngoscope, 2009 [source] Rapidly growing nodular pseudoangiomatous stromal hyperplasia of the breast in an 18-year-old girl,APMIS, Issue 5 2006Case report Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a rare benign proliferation of mesenchymal stromal cells with irregular slit-like formations resembling angiomatous structures. In the majority of cases this lesion is a focal microscopic finding in breast biopsies performed for benign or malignant diseases. It may present in a pure diffuse or nodular form. The exact etiology and pathogenesis of this tumor-like lesion is still unknown, but a proliferative response of myofibroblasts to hormonal stimuli has been postulated. A large 12×9×3.5 cm rapidly growing nodular form of PASH of the breast in an 18-year-old woman is here described with clinical and histological findings. A possible hormonal etiology was indicated by elevated progesterone (three-fold) and decreased estrogen serum levels. Different diagnostic lesions, such as giant fibroadenoma and low-grade angiosarcoma, are discussed. To the authors' knowledge this is only the fourth case of nodular PASH of the breast reported in the English literature. [source] In Vivo Osteogenic Capability of Human Mesenchymal Cells Cultured on Hydroxyapatite and on ,-Tricalcium PhosphateARTIFICIAL ORGANS, Issue 6 2009Asako Matsushima Abstract The aim of the current study was to examine in vitro osteogenic capability and in vivo bone formation of mesenchymal stromal cells (MSCs) on two kinds of calcium phosphate ceramics. MSCs derived from human bone marrow were seeded on either hydroxyapatite (HA) ceramic or ,-tricalcium phosphate (,-TCP) ceramic and then cultured in a medium supplemented with a donor's serum, vitamin C, ,-glycerophosphate, and dexamethasone. The culture revealed the expression of alkaline phosphatase activity, indicating the osteogenic differentiation of the MSCs on the ceramics (fabrication of tissue-engineered construct). The constructs were then implanted subcutaneously into nude rats for 8 weeks. New bone formation was observed in both types of ceramics, and human-specific Alu sequence was detected by in situ hybridization analysis. Quantitative microcomputed tomography showed that the volume of the new bone in the HA ceramic was greater than that in the ,-TCP ceramic in six of seven cases. These results suggest that human MSCs cultured on ceramics could retain their osteogenic capability even after ectopic implantation and provide a rationale for the use of tissue-engineered constructs derived from a patient's MSCs and calcium phosphate ceramics in bone tissue regeneration. [source] Are mesenchymal stromal cells from children resistant to apoptosis?CELL PROLIFERATION, Issue 3 2009H. Dimitriou Objectives:, Mesenchymal stromal cells (MSC) represent a novel cellular candidate in the field of transplantation and tissue regeneration. Their clinical application requires their in vitro expansion. The aim of this study was to assess the effect of conditions that would favour apoptosis, and of long-term expansion, on the characteristics of MSC from children. Materials and methods:, Bone marrow mononuclear cells were cultured for 10 passages (P1,P10). Expression of CD105, CD146, CD95 and apoptosis by 7-amino-actinomycin D staining were evaluated. CFU-F and cell doubling time (DT) were assessed in every passage. Cell-cycle study was performed at P2 and P6. Results:, CFU-F decreased from 38 ± 3.7 at P2 to 9.6 ± 3.2 per 10 MSC/cm2 at P10 and DT increased from 1.93 ± 0.1 (P2) to 6.1 ± 2.45 days (P10). A low percentage of apoptotic (dead) cells was detected at P2 and this did not change until P10. Cells at P2 were at G0/G1 phase, but in advanced passages more cells were in an active state. Induction of apoptosis (addition of anti-Fas agonist antibody) using standard culture conditions, showed a minor effect on MSC survival. Serum deprivation of MSC (up to 72 h) revealed no substantial apoptotic effect while cells retained their tri-lineage differentiation capacity. Conclusions:, We conclude that MSC from children retain their functional characteristics throughout serial passages and remain stable under conditions that usually cause apoptosis. These features render MSC, especially those of early passages, optimal candidates for use in clinical applications. [source] Novel ceramic bone replacement material CeraBall® seeded with human mesenchymal stem cellsCLINICAL ORAL IMPLANTS RESEARCH, Issue 3 2010Timothy Douglas Abstract Objectives: Hydroxyapatite (HA) and tricalcium phosphate (TCP) are two very common ceramic materials for bone replacement. A recently developed material for bone replacement is CeraBall®, which is a mixed HA,TCP scaffold available as porous spherical scaffolds of diameter 4 and 6 mm. Before their use as bone replacement materials in vivo, in vitro testing of these scaffolds is necessary. The goal of this study was to characterise 4 and 6 mm CeraBall® scaffolds in vitro with a view to their future use as bone replacement materials. Materials and methods: The proliferation of human mesenchymal stromal cells (hMSCs) seeded on CeraBall® scaffolds was evaluated quantitatively using the WST [Water soluble tetrazolium ((4-[3-(4- Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene disulfonate)] test and qualitatively by scanning electron microscopy (SEM). In addition, the standard MTT [(3-(4, 5-Dimenthylthiazol-2-Y1)-2, 5-Diphenyltetrazolium bromide)] biocompatibility test and cell vitality staining were performed using hMSCs. CeraBall® scaffolds were also tested for their mechanical properties. Results: SEM and WST test results showed that hMSCs proliferated on CeraBall® scaffolds over the course of 9 days. Proliferation was similar to that seen on tissue culture polystyrene (control). Cells showed a well-spread morphology and formed ,sheets' on the surface of scaffolds. Invasion of pores was observed. Good biocompatibility was demonstrated by MTT test results and cell vitality staining. Scaffolds of both 4 and 6 mm were able to withstand compressive loads of 5 N. Conclusions: CeraBall® scaffolds show good biocompatibility in vitro for hMSCs. This opens the way for in vivo applications. To cite this article: Douglas T, Liu Q, Humpe A, Wiltfang J, Sivananthan S, Warnke PH. Novel ceramic bone replacement material CeraBall® seeded with human mesenchymal stem cells. Clin. Oral Impl. Res. 21, 2010; 262,267. doi: 10.1111/j.1600-0501.2009.01818.x [source] |