Home About us Contact | |||
Mesenchymal Cells (mesenchymal + cell)
Kinds of Mesenchymal Cells Selected AbstractsCoating of Human Mesenchymal Cells in 3D Culture with Bioinorganic Nanoparticles Promotes Osteoblastic Differentiation and Gene Transfection,ADVANCED MATERIALS, Issue 17 2007R. Gonzalez-McQuire Mesenchymal cells are modified in suspension with bio-functionalized calcium phosphate nanoparticles using a scaffold-free cell decoration method. Coated cells remain viable and retain functionality, with cell activity stimulated by the structure and composition of the coating. [source] Serum-independent Cardiomyogenic Transdifferentiation in Human Endometrium-derived Mesenchymal CellsARTIFICIAL ORGANS, Issue 4 2010Yukinori Ikegami Abstract Media with high concentrations of serum are commonly used to induce cardiomyogenic transdifferentiation in mesenchymal stem cells; however, serum contains numerous unknown growth factors and interferes with definition of specific cardiomyogenic transdifferentiation factors secreted from feeder cells. In the present study, we determined whether the transdifferentiation of human mesenchymal cells can be observed in a FBS-free medium. The efficiency of transdifferentiation was observed in 10% FBS-containing standard medium (10%FBS) and in FBS-free medium containing insulin and thyroxin (FBS-free). In the present study, we used human uterine endometrium-derived mesenchymal cells (EMC100, EMC214) and menstrual blood-derived mesenchymal cells (MMCs). After cardiomyogenic transdifferentiation, the efficiency and physiological properties of cardiomyogenesis (fractional shortening of the cell [%FS] and action potential [AP]) were evaluated. The efficiency of transdifferentiation in EMC100 and in MMCs increased 36%* and 163%* (*P < 0.05), respectively. The %FS in EMCs increased to 103%*. AP-duration more than 250 ms with a marked plateau was only observed in FBS-free (3/19), and not in 10% FBS (0/41). The cardiomyogenic transdifferentiation of human mesenchymal cells can be observed in the FBS-free medium. Phenotypes of generated cardiomyocytes were significantly more physiological in FBS-free than in 10% FBS. [source] In Vivo Osteogenic Capability of Human Mesenchymal Cells Cultured on Hydroxyapatite and on ,-Tricalcium PhosphateARTIFICIAL ORGANS, Issue 6 2009Asako Matsushima Abstract The aim of the current study was to examine in vitro osteogenic capability and in vivo bone formation of mesenchymal stromal cells (MSCs) on two kinds of calcium phosphate ceramics. MSCs derived from human bone marrow were seeded on either hydroxyapatite (HA) ceramic or ,-tricalcium phosphate (,-TCP) ceramic and then cultured in a medium supplemented with a donor's serum, vitamin C, ,-glycerophosphate, and dexamethasone. The culture revealed the expression of alkaline phosphatase activity, indicating the osteogenic differentiation of the MSCs on the ceramics (fabrication of tissue-engineered construct). The constructs were then implanted subcutaneously into nude rats for 8 weeks. New bone formation was observed in both types of ceramics, and human-specific Alu sequence was detected by in situ hybridization analysis. Quantitative microcomputed tomography showed that the volume of the new bone in the HA ceramic was greater than that in the ,-TCP ceramic in six of seven cases. These results suggest that human MSCs cultured on ceramics could retain their osteogenic capability even after ectopic implantation and provide a rationale for the use of tissue-engineered constructs derived from a patient's MSCs and calcium phosphate ceramics in bone tissue regeneration. [source] Mesenchymal cell remodeling during mouse secondary palate reorientationDEVELOPMENTAL DYNAMICS, Issue 7 2010Jiu-Zhen Jin Abstract The formation of mammalian secondary palate requires a series of developmental events such as growth, elevation, and fusion. Despite recent advances in the field of palate development, the process of palate elevation remains poorly understood. The current consensus on palate elevation is that the distal end of the vertical palatal shelf corresponds to the medial edge of the elevated horizontal palatal shelf. We provide evidence suggesting that the prospective medial edge of the vertical palate is located toward the interior side (the side adjacent to the tongue), instead of the distal end, of the vertical palatal shelf and that the horizontal palatal axis is generated through palatal outgrowth from the side of the vertical palatal shelf rather than rotating the pre-existing vertical axis orthogonally. Because palate elevation represents a classic example of embryonic tissue re-orientation, our findings here may also shed light on the process of tissue re-orientation in general. Developmental Dynamics 239:2110,2117, 2010. © 2010 Wiley-Liss, Inc. [source] Coating of Human Mesenchymal Cells in 3D Culture with Bioinorganic Nanoparticles Promotes Osteoblastic Differentiation and Gene Transfection,ADVANCED MATERIALS, Issue 17 2007R. Gonzalez-McQuire Mesenchymal cells are modified in suspension with bio-functionalized calcium phosphate nanoparticles using a scaffold-free cell decoration method. Coated cells remain viable and retain functionality, with cell activity stimulated by the structure and composition of the coating. [source] Mesenchymal cells in the liver , one cell type or two?LIVER INTERNATIONAL, Issue 4 2002G. Ramadori Abstract: The wall of the liver sinusoid is made of highly specialized cells, the hepatic stellate cells (HSC) which together with the sinusoidal endothelial cells represent a loose barrier to the corpusculate part of the blood flowing through the liver. Quiescent stellate cells (quiescent HSC) store Vitamin A; "activated" stellate cells become involved in the reaction to acute or chronic noxae damaging the liver parenchyma. Activated HSC show increased protein synthesis capacity, increased DNA-synthesis and acquire a myofibroblast-like phenotype. Under similar conditions liver myofibroblasts (MF) of the portal field and of the pericentral area may also become "activated" by increasing protein synthesis, DNA synthesis and cell division. They express the fibulin-2 gene and produce large amounts of IL-6. In contrast to "activated" HSC they do not undergo spontaneous apoptosis in vitro and do not express the CD95-ligand gene. So far no definite prove has been found for a "transdifferentiation" of HSC to myofibroblasts. On the contrary an increasing amount of data support the conviction that HSC and MF represent two similar but not identical cell populations the latter being comparable to those of other organs. [source] Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cellsTHE JOURNAL OF GENE MEDICINE, Issue 1 2006Jung Park Abstract Background Adult primary mesenchymal cells of different origin which can be obtained with minor donor site morbidity are considered for articular cartilage repair. This study aims at a comparison of their chondrogenic potential. Methods Mesenchymal cells were isolated from perichondrium/periosteum, bone marrow or fat of adult rats and found to be positive for the stem-cell-related antigens Sca-1, c-Kit, CD10, CD13 and CD90 by reverse transcription polymerase chain reaction (RT-PCR). Chondrogenic differentiation was induced by applying recombinant bone morphogenetic protein-2 (BMP-2) or adenoviral vectors carrying BMP-2 cDNA, followed by micromass culture. The stimulated cells were characterized by RT-PCR, cell proliferation and apoptosis assays. Expression of aggrecan, collagen type I, II, IX and X and alkaline phosphatase genes was analyzed by RT-PCR, immunofluorescence and immunohistochemistry in comparison with unstimulated control cells. Adenovirally stimulated cells were transplanted into mechanically generated partial-thickness cartilage lesions in the patellar groove of the rat femur. Quality and integration of the repair tissues were assessed by histochemical and immunohistochemical methods. Results Stimulation with BMP-2 or AdBMP-2 led to an up-regulation of cartilage-specific gene expression in all three cell populations studied, most rapidly and prominently in the perichondrial/periosteal cells, which showed a 3200-fold increase of type II collagen mRNA and reached the highest absolute levels of type II and IX collagen transcripts after stimulation. Similar results were obtained for the bone marrow stromal cells (BMSC), while the respective transcript levels in fat stromal cells declined after an initial more than 30-fold elevation. Following transplantation in vivo, AdBMP-2-infected perichondrial/periosteal cells produced a proteoglycan-rich, type II collagen-positive matrix with only faint staining for type I collagen. The repair tissue originating from AdBMP-2-infected BMSC showed less intense type II collagen staining, but a relatively proteoglycan-rich matrix, weakly positive for type I collagen. Transgene-activated fat stromal cells formed rather fibrous tissue mainly composed of type I collagen. Unstimulated cells of the three different populations gave only rise to fibrous tissue. Conclusions Perichondrium/periosteum-derived cells and BMSC seem superior to cells isolated from fat with respect to forming hyaline cartilaginous tissue. A chondrogenic stimulus, e.g. by transfer of BMP-2 cDNA, appears to be required for initiation and support of chondrogenic differentiation. Copyright © 2005 John Wiley & Sons, Ltd. [source] Effects of oestrogen agonists on human dermal fibroblasts in an in vitro wounding assayEXPERIMENTAL DERMATOLOGY, Issue 11 2009Susan Stevenson Abstract:, Oestrogen and dehydroepiandrosterone (DHEA) improve wound healing, but circulating levels decline significantly with age. Recently, the selective oestrogen receptor modulators (SERMs) tamoxifen and raloxifene have been shown to improve age-associated impaired wound healing. Therefore, we have evaluated the effects of 17,-oestradiol, ER, and ER, agonists, tamoxifen, raloxifene and DHEA on human dermal fibroblasts using an in vitro wound assay. An ER, agonist, 17,-oestradiol and DHEA all significantly accelerated cell migration; the DHEA effect was blocked with an aromatase inhibitor. Tamoxifen, raloxifene and DHEA all significantly increased DNA synthesis; the DHEA stimulatory effect was reversed by an aromatase inhibitor. This study demonstrates that 17,-oestradiol, an ER, agonist, tamoxifen, raloxifene and DHEA (following conversion to oestrogen) all have significant effects on human fibroblasts, the key mesenchymal cell involved in the wound healing process. Further understanding of the mechanisms involved may have important implications for the management of age-related impaired wound healing. [source] Non-skin mesenchymal cell types support epidermal regeneration in a mesenchymal stem cell or myofibroblast phenotype-independent mannerPATHOLOGY INTERNATIONAL, Issue 6 2009Shigehisa Aoki Skin-derived fibroblasts, preadipocytes and adipocytes, and non-skin-derived bone marrow stromal cells support epidermal regeneration. It remains unclear, however, whether various organ-derived mesenchymal cell (MC) types other than the aforementioned counterparts affect epidermal regeneration. Using a skin reconstruction model, it is shown here that heart-, spleen-, lung-, liver- and kidney-derived MC support epidermal regeneration by keratinocytes. Immunohistochemistry showed that these MC types described here allowed keratinocytes to express cytokeratin (CK) 10, CK14 and involucrin in a normal fashion, and to retain the epidermal progenitor cell marker, p63, within the basal layer. MC types constantly expressed vimentin, but they were heterogeneous in their expression of the mesenchymal stem cell markers, stage-specific embryonic antigen-4, CD105, CD90 and CD44, and the myofibroblast marker, ,-smooth muscle actin. The MC types expressed keratinocyte growth factor, stromal-derived factor-1 and interleukin-6, which are all critical for dermal fibroblast,keratinocyte interaction. These results indicate that vimentin-positive MC originating from the heart, spleen, lung, liver and kidney can support epidermal regeneration without the involvement of mesenchymal stem cell and myofibroblast phenotypes of MC. [source] Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells,CYTOMETRY, Issue 3 2008Giuseppe Gaipa Abstract Background: Immunophenotypic modulation is induced by steroids in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients during remission induction therapy. Methods: We cultured BCP-ALL blasts from diagnostic bone marrow (BM) samples (n = 20) in the presence of prednisone on stroma layer obtained from BM-derived mesenchymal cells to maintain viability. Antigen expression was assessed by multiparametric flow cytometry. Results: Leukemia samples that sustained the treatment in vitro with prednisone, showed significative reduction of CD10 and CD34 expression compared with control, and it was comparable with that observed in residual leukemic cells of the same patients in BM at day 15 of treatment. Modulated cells were viable as determined by Annexin V staining and preserved light scattering properties. Of note, the extent of antigen modulation in vitro correlated with response to prednisone in vivo. Conclusions: The prednisone-induced immunophenotypic modulation can be reproduced in vitro and this phenomenon may reflect sensitivity to chemotherapy. © 2008 Clinical Cytometry Society [source] Migration of mesenchymal cell fated to blastema is necessary for fish fin regenerationDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2008Yuki Nakatani Urodeles and fish have higher regeneration ability in a variety of tissues and organs than do other vertebrate species including mammals. Though many studies have aimed at identifying the cellular and molecular basis for regeneration, relatively little is known about the detailed cellular behaviors and involved molecular basis. In the present study, a small molecule inhibitor was used to analyzed the role of phosphoinositide 3-kinase (PI3K) signaling during regeneration. We showed that the inhibitor disrupted the formation of blastema including the expression of characteristic genes. The failure of blastema formation was due to the impaired migration of mesenchymal cells to the distal prospective blastema region, although it had a little affect on cell cycle activation in mesenchymal cells. Moreover, we found that the epidermal remodeling including cell proliferation, distal cell migration and Akt phosphorylation was also affected by the inhibitor, implying a possible involvement of epidermis for proper formation of blastema. From these data, we propose a model in which distinct signals that direct the cell cycle activation, mesenchymal cell migration and epidermal remodeling coordinate together to accomplish the correct blastema formation and regeneration. [source] Growth and differentiation of the developing limb bud from the perspective of chondrogenesisDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2007Hirohito Shimizu Limb skeletal elements develop from a cartilage template, which is formed by the process termed chondrogenesis. This process is crucial in determining the shape and size of definitive bones in vertebrates. During chondrogenesis, aggregated mesenchymal cells undergo a highly organized process of proliferation and maturation along with secretion of extracellular matrix followed by programmed cell death and replacement by bone. The molecular mechanisms underlying this sophisticated process have been extensively studied. It has been demonstrated that several transcription factors such as Sox genes and Runx genes are indispensable for the major steps in chondrogenesis. Additionally, a number of signaling molecules including Bmps, Fgfs and Ihh/PTHrP are known to regulate chondrogenesis through highly coordinated interactions. This review is meant to provide an overview of the current knowledge of chondrogenesis with particular emphasis on the cellular and molecular aspects. [source] Periostin promotes a fibroblastic lineage pathway in atrioventricular valve progenitor cellsDEVELOPMENTAL DYNAMICS, Issue 5 2009Russell A. Norris Abstract Differentiation of prevalvular mesenchyme into valve fibroblasts is an integral step towards the development of functionally mature cardiac valves. Although clinically relevant, little is known regarding the molecular and cellular mechanisms by which this process proceeds. Genes that are regulated in a spatio-temporal pattern during valve remodeling are candidates for affecting this differentiation process. Based on its expression pattern, we have focused our studies on the role of the matricellular gene, periostin, in regulating the differentiation of cushion mesenchymal cells into valve fibroblasts. Herein, we demonstrate that periostin expression is coincident with and regulates type I collagen protein production, a major component of mature valve tissue. Adenoviral-mediated knock-down of periostin in atrioventricular mesenchyme resulted in a decrease in collagen I protein expression and aberrant induction of myocyte markers indicating an alteration in AV mesenchyme differentiation. In vitro analyses using a novel "cardiotube" assay further demonstrated that expression of periostin regulates lineage commitment of valve precursor cells. In these cells, expression of periostin and collagen I are regulated, in part, by TGF,-3. We further demonstrate that TGF,-3, through a periostin/collagen pathway, enhances the viscoelastic properties of AV cushion tissue surface tension and plays a crucial role in regulating valve remodeling. Thus, data presented here demonstrate that periostin, a TGF,-3 responsive gene, functions as a crucial mediator of chick AV valve maturation via promoting mesenchymal-to-fibroblast differentiation while blocking differentiation of alternative cell types (myocytes). Developmental Dynamics 238:1052,1063, 2009. © 2009 Wiley-Liss, Inc. [source] Cardiac expression patterns of endothelin-converting enzyme (ECE): Implications for conduction system developmentDEVELOPMENTAL DYNAMICS, Issue 6 2008David Sedmera Abstract The spatiotemporal distribution of the endothelin-converting enzyme (ECE) protein in the embryonic chick heart and the association of this polypeptide with the developing cardiac conduction system is described here for the first time. Further, we show how cardiac hemodynamic load directly affects ECE level and distribution. Endothelin (ET) is a cytokine involved in the inductive recruitment of Purkinje fibers. ET is produced by proteolytic cleavage of Big-ET by ECE. We generated an antibody against chick ECE recognizing a single band at ,70 kD to correlate the cardiac expression of this protein with that reported previously for its mRNA. ECE protein expression was more widespread compared to its mRNA, being present in endothelial cells, mesenchymal cells, and myocytes, and particularly enriched in the trabeculae and nascent ventricular conduction system. The myocardial expression was significantly modified under experimentally altered hemodynamic loading. In vivo, ET receptor blockade with bosentan delayed activation sequence maturation. These data support a role for ECE in avian cardiac conduction system differentiation and maturation. Developmental Dynamics 237:1746,1753, 2008. © 2008 Wiley-Liss, Inc. [source] The developing embryonic cardiac outflow tract is highly sensitive to oxidant stressDEVELOPMENTAL DYNAMICS, Issue 12 2007Steven A. Fisher Abstract This study tested the hypothesis that the remodeling of the cardiac outflow tract (OFT) may represent a developmental window of vulnerability to reactive oxygen species (ROS). Chick embryos were exposed in ovo or ex ovo to increasing concentrations of the stable oxidant hydrogen peroxide (H2O2). As assessed by trypan blue staining, H2O2 induced cell injury in the stage 25,30 OFT at concentrations as low as 1 nM. Higher concentrations were required to induce cell injury in the ventricular and atrial myocardium. Using DCFDA as an indicator of oxidant stress, H2O2 also induced a greater fluorescent signal in the OFT myocardium. H2O2 at these low concentrations also induced Caspase activity, indicative of activation of the pathway of PCD. Interestingly, the induction of Caspase-3 activity was predominately in the OFT cushion mesenchymal cells. Thus, the developing OFT is particularly sensitive to ROS-mediated injury, suggesting that ROS could play a role in the development of congenital defects of the cardiac OFT. Developmental Dynamics 236:3496,3502, 2007. © 2007 Wiley-Liss, Inc. [source] Analysis of Meox - 2 mutant mice reveals a novel postfusion-based cleft palateDEVELOPMENTAL DYNAMICS, Issue 2 2006Jiu-Zhen Jin Abstract Cleft palate represents a common human congential disease involving defects in the development of the secondary palate. Major steps in mammalian palatogenesis include vertical growth, elevation, and fusion of the palate shelves. Our current study with the homeobox gene Meox - 2 during mouse secondary palate development reveals a novel postfusion-based mechanism for cleft palate. Meox - 1 and Meox - 2 are two functionally related homeobox genes playing important roles in somitogenesis and limb muscle differentiation. We found that the expression of Meox - 2, not Meox - 1, marks the specification of early mouse palatal mesenchymal cells in the maxillary processes at embryonic day 11.5 (E11.5). From E12.5 to E15.5, the expression of Meox - 2 occupies only the posterior part of the palate, providing an early molecular marker for the anterior,posterior polarity in mouse secondary palate formation. A total of 35.3% of Meox - 2,/, (n = 17) and 25.5% of Meox - 2+/, (n = 55) mouse embryos display a cleft palate phenotype at E15.5, indicating that the reduction of Meox - 2 function is associated with susceptibility to cleft palate. Unlike previously reported clefts, none of the clefts found in Meox - 2 mutants contain any epithelial sheets in the medial edge areas, and detailed examination revealed that the clefts resulted from the breakdown of newly fused palates. This article is the first report of a gene required to maintain adherence of the palatal shelves after fusion. Developmental Dynamics 235:539,546, 2006. © 2005 Wiley-Liss, Inc. [source] Ultrastructural analysis of the smooth-to-striated transition zone in the developing mouse esophagus: Emphasis on apoptosis of smooth and origin and differentiation of striated muscle cellsDEVELOPMENTAL DYNAMICS, Issue 3 2005Jürgen Wörl Abstract The exact mechanism of smooth-to-striated muscle conversion in the mouse esophagus is controversial. Smooth-to-striated muscle cell transdifferentiation vs. distinct differentiation pathways for both muscle types were proposed. Main arguments for transdifferentiation were the failure to detect apoptotic smooth and the unknown origin of striated muscle cells during esophageal myogenesis. To reinvestigate this issue, we analyzed esophagi of 4-day-old mice by electron microscopy and a fine-grained sampling strategy considering that, in perinatal esophagus, the replacement of smooth by striated muscle progresses craniocaudally, while striated myogenesis advances caudocranially. We found numerous (1) apoptotic smooth muscle cells located mainly in a transition zone, where smooth intermingled with developing striated muscle cells, and (2) mesenchymal cells in the smooth muscle portion below the transition zone, which appeared to give rise to striated muscle fibers. Taken together, these results provide further evidence for distinct differentiation pathways of both muscle types during esophagus development. Developmental Dynamics 233:964,982, 2005. © 2005 Wiley-Liss, Inc. [source] Contribution of mesothelium-derived cells to liver sinusoids in avian embryosDEVELOPMENTAL DYNAMICS, Issue 3 2004J.M. Pérez-Pomares Abstract The developing liver is vascularized through a complex process of vasculogenesis that leads to the differentiation of the sinusoids. The main structural elements of the sinusoidal wall are endothelial and stellate (Ito) cells. We have studied the differentiation of the hepatic sinusoids in avian embryos through confocal colocalization of differentiation markers, in ovo direct labeling of the liver mesothelium, induced invasion of the developing chick liver by quail proepicardial cells, and in vitro culture of chimeric aggregates. Our results show that liver mesothelial cells give rise to mesenchymal cells which intermingle between the growing hepatoblast cords and become incorporated to the sinusoidal wall, contributing to both endothelial and stellate cell populations. We have also shown that the proepicardium, a mesothelial tissue anatomically continuous with liver mesothelium, is able to form sinusoid-like vessels into the hepatic primordium as well as in cultured aggregates of hepatoblasts. Thus, both intrinsic or extrinsic mesothelium-derived cells have the developmental potential to contribute to the establishment of liver sinusoids. Developmental Dynamics 229:465,474, 2004. © 2004 Wiley-Liss, Inc. [source] Timeless in lung morphogenesisDEVELOPMENTAL DYNAMICS, Issue 1 2003Jing Xiao Abstract The Clock gene, timeless, regulates circadian rhythm in Drosophila, but its vertebrate homolog is critical to embryonic development. Timeless was shown to be involved in murine urethral bud branching morphogenesis. We generated a polyclonal antibody to mouse TIMELESS (mTIM) and studied its distribution and its potential role during lung development, which also requires branching morphogenesis. In the early mouse embryo, TIM was localized to all organs, especially the neural epithelium. In embryonic day (E) 9.5 embryos, TIM was present in both epithelial and mesenchymal cells at the onset of lung morphogenesis. In E15 embryos, TIM decreased in the mesenchyme but remained pronounced in the epithelium of both large and small airways. Later, TIM was localized to a specific subset of epithelial cells with alveolar type 2 phenotype. This finding was verified by immunostaining of isolated alveolar type 2 cells. In the proximal airways, TIM was colocalized with CCSP to nonciliated columnar epithelial cells. Antisense oligonucleotides to mTim specifically inhibited branching morphogenesis of embryonic lungs in explant culture without affecting SpC expression an alveolar type 2 cell marker. In cultured lung cells, expression of TIM is independent of cell cycle and proliferation. These studies indicate that the function of Timeless is highly conserved in organs whose formation requires branching morphogenesis. Developmental Dynamics 228:82,94, 2003. © 2003 Wiley-Liss, Inc. [source] Spontaneous mutation in mice provides new insight into the genetic mechanisms that pattern the seminal vesicles and prostate glandDEVELOPMENTAL DYNAMICS, Issue 4 2003Paul C. Marker Abstract The seminal vesicles and prostate gland are anatomically adjacent male sex-accessory glands. Although they arise from different embryonic precursor structures and express distinct sets of secretory proteins, these organs share common features in their developmental biology. A key shared developmental feature is the elaboration of complex secretory epithelia with tremendous surface area from simple precursor structures with juxtaposed epithelial and mesenchymal cells. In this study, new insight into the nature of the biological processes that underlie glandular morphogenesis is achieved by analyzing the phenotypes present in mice that harbor a spontaneous mutation, seminal vesicle shape (svs), previously identified for causing altered seminal vesicle morphology in adults. An examination of seminal vesicle development in svs mice provides the first evidence that the concurrent processes of epithelial branching and epithelial infolding are distinct processes under separate genetic control. It also provides the first direct evidence that the thickness and topology of the smooth muscle layer in the seminal vesicles are determined by interaction with the glandular epithelium during the branching process. In addition, the seminal vesicle phenotype in svs mice is shown to phenocopy the morphologic form present in certain other mammals such as the guinea pig, raising the possibility that the svs mutation is the sort of variant that arises during evolution. By also including an investigation of the prostate gland, this study also identifies previously unrecognized phenotypes in svs prostates, including increased gland size and dramatically reduced levels of branching morphogenesis. Finally, this study advances the goal of identifying the svs gene by mapping the svs mutation relative to known molecular markers and testing Fgfr2 as a candidate gene. The finding that the svs mutation maps to a genomic region syntenic to a region frequently deleted in human prostate tumors, together with the prostatic phenotype present in svs mice, further raises the interesting possibility that the svs mutation will identify a candidate prostate tumor suppressor gene. Developmental Dynamics 226:643,653, 2003. © 2003 Wiley-Liss, Inc. [source] Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro,DEVELOPMENTAL DYNAMICS, Issue 2 2002Anthony M. Delise Abstract During embryonic limb development, cartilage formation is presaged by a crucial mesenchymal cell condensation phase. N-Cadherin, a Ca2+ -dependent cell,cell adhesion molecule, is expressed in embryonic chick limb buds in a spatiotemporal pattern suggestive of its involvement during cellular condensation; functional blocking of N-cadherin homotypic binding, by using a neutralizing monoclonal antibody, results in perturbed chondrogenesis in vitro and in vivo. In high-density micromass cultures of embryonic limb mesenchymal cells, N-cadherin expression level is high during days 1 and 2, coincident with active cellular condensation, and decreases upon overt chondrogenic differentiation from day 3 on. In this study, we have used a transfection approach to evaluate the effects of gain- and loss-of-function expression of N-cadherin constructs on mesenchymal condensation and chondrogenesis in vitro. Chick limb mesenchymal cells were transfected by electroporation with recombinant expression plasmids encoding wild-type or two mutant extracellular/cytoplasmic deletion forms of N-cadherin. Expression of the transfected N-cadherin forms showed a transient profile, being high on days 1,2 of culture, and decreasing by day 3, fortuitously coincident with the temporal profile of endogenous N-cadherin gene expression. Examined by means of peanut agglutinin (PNA) staining for condensing precartilage mesenchymal cells, cultures overexpressing wild-type N-cadherin showed enhanced cellular condensation on culture days 2 and 3, whereas expression of the deletion mutant forms (extracellular/cytoplasmic) of N-cadherin resulted in a decrease in PNA staining, suggesting that a complete N-cadherin protein is required for normal cellular condensation to occur. Subsequent chondrogenesis was also affected. Cultures overexpressing the wild-type N-cadherin protein showed enhanced chondrogenesis, indicated by increased production of cartilage matrix (sulfated proteoglycans, collagen type II, and cartilage proteoglycan link protein), as well as increased cartilage nodule number and size of individual nodules, compared with control cultures and cultures transfected with either of the two mutant N-cadherin constructs. These results demonstrate that complete N-cadherin function, at the levels of both extracellular homotypic binding and cytoplasmic linkage to the cytoskeleton by means of the catenin complex, is required for chondrogenesis by mediating functional mesenchymal cell condensation. © 2002 Wiley-Liss, Inc. [source] Cell proliferation during blastema formation in the regenerating teleost finDEVELOPMENTAL DYNAMICS, Issue 2 2002Leonor Santos-Ruiz Abstract Epimorphic regeneration in teleost fins occurs through the establishment of a balanced growth state in which a blastema gives rise to all the mesenchymal cells, whereas definite areas of the epidermis proliferate leading to its extension, thus, allowing the enlargement of the whole structure. This type of regeneration involves specific mechanisms that temporally and spatially regulate cell proliferation. To understand how the blastema is formed and how this growth situation is set up, we investigated cell proliferation patterns in the regenerating fin of the goldfish Carassius auratus from the time of amputation to that of blastema formation by using proliferating cell nuclear antigen immunostaining and bromodeoxyuridine labeling. Wound closure and apical epidermal cap formation took place by epidermal migration and re-arrangement, without the contribution of cell proliferation. As soon as the apical cap had formed, the epidermis started to proliferate at its lateral surfaces, in which all layers maintained cycling for the duration of the studied process. The distal epidermal cap, on the contrary, presented very few cycling cells, and its cytoarchitecture was indicative of continuous remodeling due to ray growth. The basal layer of this epidermal cap showed a typical morphology and remained nonproliferative whilst in contact with the proliferating blastema. Proliferation in the mesenchymal compartment of the ray started far from the amputation plane. Subsequently, cycling cells approached that location, until they formed the blastema in contact with the apical epidermal cap. Differences observed between the epidermis and mesenchyma, regarding activation of the cell cycle and the establishment of proliferative patterns, suggest that differential mechanisms regulate cell proliferation in each of these compartments during the initial stages of regeneration. © 2002 Wiley-Liss, Inc. [source] Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limbDEVELOPMENTAL DYNAMICS, Issue 3 2001Melinda Yin Abstract Vascular regression occurs during limb mesenchymal cell condensation and chondrogenesis, but it is unclear whether it is required for these processes or is a secondary phenomenon without major regulatory roles. To address this issue, beads presoaked with the potent angiogenic factor vascular endothelial growth factor (VEGF) were implanted in the vicinity of the prospective digit 2 in early chick embryo wing buds and the effects on angiogenesis and digit development were determined over time. We found that VEGF treatment caused a marked local increase in blood vessel number and density. Strikingly, this was accompanied by inhibition of digit 2 development as revealed by lack of expression of chondrogenic transcription factor Sox9 and absence of Alcian blue staining. Vascular distribution and skeletal development in adjacent areas remained largely unaffected. Inhibition of digit formation and excess vascularization were both reversible upon further embryonic growth and dissipation of VEGF activity. When supernumerary digits were induced at the anterior limb margin by retinoic acid treatment, their development was also preceded by vascular regression; interestingly, cotreatment with VEGF inhibited supernumerary digit development as well. Direct exposure of limb mesenchymal cells in micromass cultures to VEGF caused no obvious effects on condensation and chondrogenesis, indicating that VEGF effects are not due to direct action on skeletal cells. Our results are the first to provide evidence that vascular regression is required for mesenchymal condensation and chondrogenesis. A model of how patterning mechanisms and vascular regression may intersect and orchestrate limb skeletogenesis is proposed. © 2001 Wiley-Liss, Inc. [source] Expression and regulation of mouse Mtsh1 during limb and branchial arch developmentDEVELOPMENTAL DYNAMICS, Issue 2 2001Qiaoming Long Abstract The mouse genome contains at least two genes, Mtsh1 and Mtsh2, related in sequence to the Drosophila homeotic gene teashirt (tsh). In this paper, we report the characterization of Mtsh1 expression in the developing branchial arches and forelimbs during mouse embryogenesis. Mtsh1 was found predominantly transcribed in the mesenchymal tissue of branchial arches and forelimbs. Surgical removal of the epithelium of both forelimb and branchial arch significantly decreased the expression of Mtsh1 in the mesenchymal cells of these tissues. Upon implantation of FGF8-soaked beads into arches and limbs, Mtsh1 transcription was up-regulated. In contrast, when BMP4-soaked beads were implanted, Mtsh1 expression was inhibited. Together, these results suggest that mouse Mtsh1 gene may be involved in the outgrowth of limbs and arches and may be functioning downstream of BMP and FGF signaling pathways. © 2001 Wiley-Liss, Inc. [source] Ultrastructural features of the process of wound healing after tail and limb amputation in lizardACTA ZOOLOGICA, Issue 3 2010L. Alibardi Abstract Alibardi, L. 2010. Ultrastructural features of the process of wound healing after tail and limb amputation in lizard.,Acta Zoologica (Stockholm) 91: 306,318 Wound healing and re-epitelization after amputation of tail and limb in lizard have been studied by electron microscopy to understand the cytological base of immunity to infection in this species. After 2 days post-amputation in both limb and tail stumps, numerous granulocytes are accumulated over the stump, and participate to the formation of the scab. Bacteria remain confined to the scab or are engulfed by leukocytes and migrating keratinocytes located underneath the scab. Bacteria are degraded within lysosomes present in these cells and are not observed among mesenchymal cells or in blood vessels of the regenerative blastema. Granulocytes, migrating keratinocytes, and later macrophages form an effective barrier responsible for limiting microbe penetration. The innate immunity in lizard is very effective in natural (dirty) condition and impedes the spreading of infection to inner tissues. While the complete re-epitelization of the tail stump underneath the scab requires 4,7 days, the same process in the limb requires 8,18 or more days post-amputation, depending from the level of amputation and the persistence of a protruding humerus or femurs on the stump surface. This delay produces the permanence of inflammatory cells such as granulocytes and macrophages in the limb stump for a much longer period than in the tail stump, a process that stimulates scarring. [source] Differentiation of the epidermis of scutes in embryos and juveniles of the tortoise Testudo hermanni with emphasis on beta-keratinizationACTA ZOOLOGICA, Issue 3 2005L. Alibardi Abstract The sequence of differentiation of the epidermis of scutes during embryogenesis in the tortoise Testudo hermanni was studied using autoradiography, electron microscopy and immunocytochemistry. The study was mainly conducted on the epidermis of the carapace, plastron and nail. Epidermal differentiation resembles that described for other reptiles, and the embryonic epidermis is composed of numerous cell layers. In the early stages of differentiation of the carapacial ridge, cytoplasmic blebs of epidermal cells are in direct contact with the extracellular matrix and mesenchymal cells. The influence of the dermis on the formation of the beta-layer is discussed. The dermis becomes rich in collagen bundles at later stages of development. The embryonic epidermis is formed by a flat periderm and four to six layers of subperidermal cells, storing 40,70-nm-thick coarse filaments that may represent interkeratin or matrix material. Beta-keratin is associated with the coarse filaments, suggesting that the protein may be polymerized on their surface. The presence of beta-keratin in embryonic epidermis suggests that this keratin might have been produced at the beginning of chelonian evolution. The embryonic epidermis of the scutes is lost around hatching and leaves underneath the definitive corneous beta-layer. Beneath the embryonic epidermis, cells that accumulate typical large bundles of beta-keratin appear at stage 23 and at hatching a compact beta-layer is present. The differentiation of these cells shows the progressive replacement of alpha-keratin bundles with bundles immunolabelled for beta-keratin. The nucleus is degraded and electron-dense nuclear material mixes with beta-keratin. In general, changes in tortoise skin when approaching terrestrial life resemble those of other reptiles. Lepidosaurian reptiles form an embryonic shedding layer and crocodilians have a thin embryonic epidermis that is rapidly lost near hacthing. Chelonians have a thicker embryonic epidermis that accumulates beta-keratin, a protein later used to make a thick corneous layer. [source] The location and characteristics of two populations of dental pulp cells affect tooth developmentEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2 2009Yoshinori Sumita This study investigated the characteristics of two dental pulp cell populations during the early stages of crown formation in porcine teeth. A transplantation method was developed to reproduce epithelial cell,mesenchymal cell interactions during odontogenesis (tooth development). The technique allowed two types of cells/tissue to be combined in vivo. Populations of cells localized in the cervical loop epithelium region, dental pulp horn, and dental pulp core chambers were isolated and dissociated into single cells. Each population was examined for its gene-expression pattern using both semiquantitative and quantitative reverse transcription,polymerase chain reaction (RT-PCR) analyses, and for its tissue-formation capability by combining the cervical loop epithelial cells with either pulp horn cells or pulp core cells on biodegradable collagen scaffolds that were subsequently examined using histology and immunohistology. Gene-expression patterns showed that pulp horn cells were more mature than pulp core cells. Cervical loop epithelial cells combined with pulp horn cells mainly reconstituted dentin,cementum structures. By contrast, cervical loop epithelial cells combined with pulp core cells reconstituted enamel,dentin structures. These results suggest that mesenchymal cells residing in a specific location of the pulp possess a specific tissue-formation potential when combined with epithelial cells. [source] Cellular and molecular mechanisms of bleomycin-induced murine scleroderma: current update and future perspectiveEXPERIMENTAL DERMATOLOGY, Issue 2 2005Toshiyuki Yamamoto Abstract:, Scleroderma is a fibrotic condition characterized by immunologic abnormalities, vascular injury and increased accumulation of matrix proteins in the skin. Although the aetiology of scleroderma is not fully elucidated, a growing body of evidence suggests that extracellular matrix overproduction by activated fibroblasts results from complex interactions among endothelial cells, lymphocytes, macrophages and fibroblasts, via a number of mediators. Cytokines, chemokines and growth factors secreted by inflammatory cells and mesenchymal cells (fibroblasts and myofibroblasts) play an important role in the fibrotic process of scleroderma. Recently, we established a murine model of scleroderma by repeated local injections of bleomycin. Dermal sclerosis was induced in various mouse strains, although the intensity of dermal sclerosis varied among various strains. Histopathological and biochemical analysis demonstrated that this experimental murine scleroderma reflected a number of aspects of human scleroderma. Further investigation of the cellular and molecular mechanisms of inflammatory reaction, fibroblast activation and extracellular matrix deposition following dermal injury by bleomycin treatment will lead to the better understanding of the pathophysiology and the exploration of effective treatment against scleroderma. This review summarizes recent progress of the cellular and molecular events in the pathogenesis of bleomycin-induced scleroderma; moreover, further perspective by using this mouse model has been discussed. [source] Cell dissociation experiments reveal that positional information operates in the chicken frontonasal massGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 3 2006Masayoshi Kawakami Abstract In this study we examined the role of cell,cell affinity in patterning the avian frontonasal mass,the facial prominence that forms the prenasal cartilage and premaxillary bone. Reconstituted cell pellets derived from undifferentiated, frontonasal mass mesenchyme were recombined with facial epithelium and grafted to host embryos to continue development. We determined that the cells reestablished a recognizable frontonasal mass pattern and were able to induce egg teeth in overlying ectoderm. Further analysis revealed there were region-specific differences in the cartilage patterns such that central recombinations were more likely to form a straight cartilage rod, whereas lateral mesenchyme pellets were more likely to form complex, branched cartilage patterns. The basis for the pattern differences was that central mesenchyme cells showed preferential clustering in the cartilage condensations in the center of the graft, whereas lateral cells were spread throughout as determined by dye labeling and quail chicken chimeras. The disruption of cell contacts temporarily delayed onset of gene expression but by 48 h both Msx2 and Dlx5 were expressed. Msx2, in particular, had very clear edges to the expression domains and often the pattern of expression correlated with type of cartilage morphology. Together, these data suggest that an important patterning mechanism in the face is the ability of mesenchymal cells to sort out according to position and that Msx2 may help repress chondrogenic potential in the lateral frontonasal mass. genesis 44:105,114, 2006. © 2006 Wiley-Liss, Inc. [source] Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeatsHAEMOPHILIA, Issue 3 2003A. Van Damme No abstract is available for this article. [source] |