Home About us Contact | |||
MEP Amplitude (mep + amplitude)
Selected AbstractsIntensity modulation of TMS-induced cortical excitation: Primary motor cortexHUMAN BRAIN MAPPING, Issue 6 2006Peter T. Fox Abstract The intensity dependence of the local and remote effects of transcranial magnetic stimulation (TMS) on human motor cortex was characterized using positron-emission tomography (PET) measurements of regional blood flow (BF) and concurrent electromyographic (EMG) measurements of the motor-evoked potential (MEP). Twelve normal volunteers were studied by applying 3 Hz TMS to the hand region of primary motor cortex (M1hand). Three stimulation intensities were used: 75%, 100%, and 125% of the motor threshold (MT). MEP amplitude increased nonlinearly with increasing stimulus intensity. The rate of rise in MEP amplitude was greater above MT than below. The hemodynamic response in M1hand was an increase in BF. Hemodynamic variables quantified for M1hand included value-normalized counts (VNC), intensity (z-score), and extent (mm3). All three hemodynamic response variables increased nonlinearly with stimulus intensity, closely mirroring the MEP intensity-response function. VNC was the hemodynamic response variable which showed the most significant effect of TMS intensity. VNC correlated strongly with MEP amplitude, both within and between subjects. Remote regions showed varying patterns of intensity response, which we interpret as reflecting varying levels of neuronal excitability and/or functional coupling in the conditions studied. Hum Brain Mapp, 2005. © 2005 Wiley-Liss, Inc. [source] Impaired motor imagery in patients with essential tremor: A case control studyMOVEMENT DISORDERS, Issue 4 2007Yew-Long Lo MD Abstract Motor imagery (MI), which refers to the process of mental representation of movements, has not been studied in patients with essential tremor (ET). We investigated the presence of impaired MI in ET patients compared with healthy controls. A group of drug-naive and nondemented ET patients and age-matched controls were studied using transcranial magnetic stimulation, while they were specifically instructed to try and imagine themselves performing two motor tasks. The various clinical and electrophysiological variables were evaluated and compared. Repeated measures ANOVA demonstrated a significant difference between ET patients and controls with respect to mean motor-evoked potential (MEP) amplitudes (F(1,38) = 31.92, P < 0.005) during MI. The process of MI effectively facilitated MEP amplitude in controls but not in ET patients, regardless of side of stimulation or motor tasks. We provide evidence to demonstrate impairment of MI in a group of ET patients compared with healthy controls. The basis for this novel finding is unclear, and further studies are warranted to determine whether it is related to cerebellar or motor cortical dysfunction. © 2007 Movement Disorder Society [source] Altered corticomotor representation in patients with Parkinson's diseaseMOVEMENT DISORDERS, Issue 8 2003Florian A. Kagerer PhD Abstract In 6 patients with Parkinson's disease (PD) and 6 age-matched controls, transcranial magnetic stimulation was applied at 56 regions over the motor cortex and premotor cortex of each hemisphere, with the first dorsal interosseous (FDI) muscle of both hands activated at 15% maximum voluntary contraction during stimulation. For each site, motor evoked potential (MEP) landmarks were recovered, including MEP amplitude, MEP onset latency, and silent period duration. Scaled MEP amplitudes were used to construct individual cortical maps of the FDI muscles. The maps revealed an anterior displacement of the muscle representation in PD patients. This anterior shift over motor cortical areas may reflect increased contributions of corticocortical connections between motor cortex and premotor cortical areas, possibly enhanced by the visual feedback aspect of the task. These alterations may reflect adaptations to the impairments in striatocortical circuits in PD. © 2003 Movement Disorder Society [source] Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescentsPEDIATRIC ANESTHESIA, Issue 11 2008JOSEPH D. TOBIAS MD Summary Background:, Dexmedetomidine may be a useful agent as an adjunct to an opioid,propofol total intravenous anesthesia (TIVA) technique during posterior spinal fusion (PSF) surgery. There are limited data regarding its effects on somatosensory (SSEPs) and motor evoked potentials (MEPs). Methods:, The data presented represent a retrospective review of prospectively collected quality assurance data. When the decision was made to incorporate dexmedetomidine into the anesthetic regimen for intraoperative care of patients undergoing PSF, a prospective evaluation of its effects on SSEPs and MEPs was undertaken. SSEPs and MEPs were measured before and after the administration of dexmedetomidine in a cohort of pediatric patients undergoing PSF. Dexmedetomidine (1 ,g·kg,1 over 20 min followed by an infusion of 0.5 ,g·kg,1·h,1) was administered at the completion of the surgical procedure, but prior to wound closure as an adjunct to TIVA which included propofol and remifentanil, adjusted to maintain a constant depth of anesthesia as measured by a BIS of 45,60. Results:, The cohort for the study included nine patients, ranging in age from 12 to 17 years, anesthetized with remifentanil and propofol. In the first patient, dexmedetomidine was administered in conjunction with propofol at 110 ,g·kg,1·min,1 which resulted in a decrease in the bispectral index from 58 to 31. Although no significant effect was noted on the SSEPs (amplitude or latency) or the MEP duration, there was a decrease in the MEP amplitude. The protocol was modified so that the propofol infusion was incrementally decreased during the dexmedetomidine infusion to achieve the same depth of anesthesia. In the remaining eight patients, the bispectral index was 52 ± 6 at the start of the dexmedetomidine loading dose and 49 ± 4 at its completion (P = NS). There was no statistically significant difference in the MEPs and SSEPs obtained before and at completion of the dexmedetomidine loading dose. Conclusion:, Using the above-mentioned protocol, dexmedetomidine can be used as a component of TIVA during PSF without affecting neurophysiological monitoring. [source] Low-frequency repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortexTHE JOURNAL OF PHYSIOLOGY, Issue 18 2008V. Di Lazzaro Previous studies have shown that low-frequency repetitive transcranial magnetic stimulation (rTMS) suppresses motor-evoked potentials (MEPs) evoked by single pulse TMS. The aim of the present paper was to investigate the central nervous system level at which rTMS produces a suppression of MEP amplitude. We recorded corticospinal volleys evoked by single pulse TMS of the motor cortex before and after 1 Hz rTMS in five conscious subjects who had an electrode implanted in the cervical epidural space for the control of pain. One of the patients had Parkinson's disease and was studied on medication. Repetitive TMS significantly suppressed the amplitude of later I-waves, and reduced the amplitude of concomitantly recorded MEPs. The earliest I-wave was not significantly modified by rTMS. The present results show that 1 Hz rTMS may decrease the amplitude of later descending waves, consistent with a cortical origin of the effect of 1 Hz rTMS on MEPs. [source] Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Karin Rosenkranz Abstract Several experimental protocols induce lasting changes in the excitability of motor cortex. Some involve direct cortical stimulation, others activate the somatosensory system and some combine motor and sensory stimulation. The effects usually are measured as changes in amplitude of the motor-evoked-potential (MEP) or short-interval intracortical inhibition (SICI) elicited by a single or paired pulses of transcranial magnetic stimulation (TMS). Recent work has also tested sensorimotor organization within the motor cortex by recording MEPs and SICI during short periods of vibration applied to single intrinsic hand muscles. Here sensorimotor organization is focal: MEPs increase and SICI decreases in the vibrated muscle, whilst the opposite occurs in neighbouring muscles. In six volunteers we compared the after effects of three protocols that lead to lasting changes in cortical excitability: (i) paired associative stimulation (PAS) between a TMS pulse and an electrical stimulus to the median nerve; (ii) motor practice of rapid thumb abduction; and (iii) sensory input produced by semicontinuous muscle vibration, on MEPs and SICI at rest and on the sensorimotor organization. PAS increased MEP amplitudes, whereas vibration changed sensorimotor organization. Motor practice had a dual effect and increased MEPs as well as affecting sensorimotor organization. The implication is that different protocols target different sets of cortical circuits. We speculate that protocols that involve repeated activation of motor cortical output lead to lasting changes in efficacy of synaptic connections in output circuits, whereas protocols that emphasize sensory inputs affect the strength of sensory inputs to motor circuits. [source] Altered corticomotor representation in patients with Parkinson's diseaseMOVEMENT DISORDERS, Issue 8 2003Florian A. Kagerer PhD Abstract In 6 patients with Parkinson's disease (PD) and 6 age-matched controls, transcranial magnetic stimulation was applied at 56 regions over the motor cortex and premotor cortex of each hemisphere, with the first dorsal interosseous (FDI) muscle of both hands activated at 15% maximum voluntary contraction during stimulation. For each site, motor evoked potential (MEP) landmarks were recovered, including MEP amplitude, MEP onset latency, and silent period duration. Scaled MEP amplitudes were used to construct individual cortical maps of the FDI muscles. The maps revealed an anterior displacement of the muscle representation in PD patients. This anterior shift over motor cortical areas may reflect increased contributions of corticocortical connections between motor cortex and premotor cortical areas, possibly enhanced by the visual feedback aspect of the task. These alterations may reflect adaptations to the impairments in striatocortical circuits in PD. © 2003 Movement Disorder Society [source] |