Home About us Contact | |||
Membrane-associated Proteins (membrane-associated + protein)
Selected AbstractsDetergent-resistant membranes are platforms for actinoporin pore-forming activity on intact cellsFEBS JOURNAL, Issue 4 2006Jorge Alegre-Cebollada Sticholysin II is a pore-forming toxin produced by the sea anemone Stichodactyla helianthus. We studied its cytolytic activity on COS-7 cells. Fluorescence spectroscopy and flow cytometry revealed that the toxin permeabilizes cells to propidium cations in a dose-dependent and time-dependent manner. This permeabilization is impaired by preincubation of cells with cyclodextrin. Isolation of detergent-resistant cellular membranes showed that sticholysin II colocalizes with caveolin-1 in fractions corresponding to raft-like domains. The interaction of sticholysin II with such domains is only lipid dependent as it also occurs in the absence of any other membrane-associated protein. Toxin binding to raft-like lipid vesicles inhibited cell permeabilization. The results suggest that sticholysin II promotes pore formation in COS-7 cells through interaction with membrane domains which behave like cellular rafts. [source] Dynamics of bacterial cytoskeletal elementsCYTOSKELETON, Issue 11 2009Peter L. Graumann Abstract Bacterial cytoskeletal elements are involved in an astonishing spectrum of cellular functions, from cell shape determination to cell division, plasmid segregation, the positioning of membrane-associated proteins and membrane structures, and other aspects of bacterial physiology. Interestingly, these functions are not necessarily conserved, neither between different bacterial species nor between bacteria and eukaryotic cells. The flexibility of cytoskeletal elements in performing different tasks is amazing and emphasises their very early development during evolution. This review focuses on the dynamics of cytoskeletal elements from bacteria. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source] Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2ELECTROPHORESIS, Issue 14 2006Richard C. Barry Abstract A proteomic map of Sulfolobus solfataricus,P2, an archaeon that grows optimally at 80°C and pH,3.2, was developed using high-resolution 2-DE and peptide mass fingerprinting. A total of 867,protein spots (659,aqueous Tris-soluble spots and 208,aqueous Tris-insoluble) were mapped over IPG,3,10, 4,7, and 6,11, with second-dimensional gels made of 8,18%,polyacrylamide. Three hundred and twenty-four different gene products were represented by the 867,spots, with 274,gene products being identified in the Tris-soluble fractions and 100,gene products in the Tris-insoluble portion. Fifty gene products were found on gels from both fractions. Additionally, an average of 1.50 ± 0.12 isoforms/protein was identified. This mapping study confirmed the expression of proteins involved in numerous metabolic, transport, energy production, nucleic acid replication, translation, and transcription pathways. Of particular interest, phosphoenolpyruvate carboxykinase,(SSO2537) was detected even though the pathway for gluconeogenesis is unknown for this archaeon. Tris-soluble fractions contained many cytosolic proteins while Tris-insoluble fractions contained many membrane-associated proteins, including ABC transporters and an ATP synthase. This study provides an optimized 2-DE approach for investigating the biochemical pathways and post-translational modifications employed by Sulfolobus to survive in its extreme environment. [source] OmpA is an adhesion factor of Aeromonas veronii, an optimistic pathogen that habituates in carp intestinal tractJOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2008A. Namba Abstract Aims:, In the present study, we focused on one of the Aeromonas veronii isolates that exhibited marked adhesion onto carp intestine and studied its membrane-associated proteins for their possible involvement in mucosal adhesion. Methods and Results:, We isolated a strain of Aer. veronii (CWP11) that exhibited a high degree of temperature-dependent adhesion activity onto carp intestinal tract and studied its adhesion factor. A proteomic analysis of the membrane-associated fraction showed the presence of multiple proteins that were specifically expressed in CWP11 cells cultured at 25°C. Of these, a 30 kDa protein was identified to be OmpA by a mass fingerprint analysis. Cloning and nucleotide sequencing of the ompA region of CWP11 revealed the presence of two tandem ompA homologues (ompAI - ompAII). Escherichia coli that expressed either OmpAI or OmpAII exhibited marked adhesion onto carp intestinal surface. Disruption of ompAI by a homologous recombination technique resulted in marked reduction of the adhesion activity in CWP11. Conclusion:, The OmpA homologue plays an important role in the adhesion of the Aer. veronii strain onto the surface of intestinal tract. Significance and Impact of the Study:, We successfully identified an OmpA homologue to be an adhesion factor of Aer. veronii, an optimistic pathogen that habituates in carp intestinal tract. [source] Polycystins: what polycystic kidney disease tells us about spermMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004Abraham L. Kierszenbaum Abstract Experimental evidence indicates that the membrane-associated proteins polycystin-1 and polycystin-2 operate as a receptor-calcium channel complex that regulates signaling pathways essential for modulation of renal tubulogenesis. Polycystic kidney disease is characterized by defective renal tubular structure and results from mutations in either PKD1 or PKD2 genes. Recent data suggest that polycystin-1 and polycystin-2 might localize to primary cilium in principal cells of renal collecting tubules and are thought to act as mechanosensors of fluid flow and contents. Ciliary bending by fluid flow or mechanical stimulation induce Ca2+ release from intracellular stores, presumably to modulate ion influx in response to tubular fluid flow. Polycystins are also emerging as playing a significant role in sperm development and function. Drosophila polycystin-2 is associated with the head and tail of mature sperm. Targeted disruption of the PKD2 homolog results in nearly complete male sterility without disrupting spermatogenesis. Mutant sperm are motile but are unable to reach the female storage organs (seminal receptacles and spermathecae). The sea urchin polycystin-1-equivalent suPC2 colocalizes with the polycystin-1 homolog REJ3 to the plasma membrane over the acrosomal vesicle. This localization site suggests that the suPC2-REJ3 complex may function as a cation channel mediating acrosome reaction when sperm contact the jelly layer surrounding the egg at fertilization. Future studies leading to the identification of specific ligands for polycystins, including the signaling pathways, might define the puzzling relationship between renal tubular morphogenesis and sperm development and function. Mol. Reprod. Dev. 67: 385,388, 2004. © 2004 Wiley-Liss, Inc. [source] Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structurePROTEIN SCIENCE, Issue 1 2006Russell Schwartz Abstract Patterns of alternation of hydrophobic and polar residues are a profound aspect of amino acid sequences, but a feature not easily interpreted for soluble proteins. Here we report statistics of hydrophobicity patterns in proteins of known structure in a current protein database as compared with results from earlier, more limited structure sets. Previous studies indicated that long hydrophobic runs, common in membrane proteins, are underrepresented in soluble proteins. Long runs of hydrophobic residues remain significantly underrepresented in soluble proteins, with none longer than 16 residues observed. These long runs most commonly occur as buried , helices, with extended hydrophobic strands less common. Avoiding aggregation of partially folded intermediates during intracellular folding remains a viable explanation for the rarity of long hydrophobic runs in soluble proteins. Comparison between database editions reveals robustness of statistics on aqueous proteins despite an approximately twofold increase in nonredundant sequences. The expanded database does now allow us to explain several deviations of hydrophobicity statistics from models of random sequence in terms of requirements of specific secondary structure elements. Comparison to prior membrane-bound protein sequences, however, shows significant qualitative changes, with the average hydrophobicity and frequency of long runs of hydrophobic residues noticeably increasing between the database editions. These results suggest that the aqueous proteins of solved structure may represent an essentially complete sample of the universe of aqueous sequences, while the membrane proteins of known structure are not yet representative of the universe of membrane-associated proteins, even by relatively simple measures of hydrophobic patterns. [source] Shotgun proteomic analysis of Chlamydia trachomatisPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2005Paul Skipp Abstract Chlamydiae are widespread bacterial pathogens responsible for a broad range of diseases, including sexually transmitted infections, pneumonia and trachoma. To validate the existence of hitherto hypothetical proteins predicted from recent chlamydial genome sequencing projects and to examine the patterns of expression of key components at the protein level, we have surveyed the expressed proteome of Chlamydia trachomatis strain,L2. A combination of two-dimensional gel analysis, multi-dimensional protein identification (MudPIT) and nanocapillary liquid chromatography-tandem mass spectrometry allowed a total of 328,chlamydial proteins to be unambiguously assigned. Proteins identified as being expressed in the metabolically inert form, elementary body, of Chlamydia include the entire set of predicted glycolytic enzymes, indicating that metabolite flux rather than de novo synthesis of this pathway is triggered upon infection of host cells. An enzyme central to cell wall biosynthesis was also detected in the intracellular form, reticulate body, of Chlamydia, suggesting that the peptidoglycan is produced during growth within host cells. Other sets of proteins identified include 17 outer membrane-associated proteins of potential significance in vaccine studies and 67,proteins previously annotated as hypothetical or conserved hypothetical. Taken together, ,35% of the predicted proteome for C.,trachomatis has been experimentally verified, representing the most extensive survey of any chlamydial proteome to date. [source] Molecular and Cellular Mechanisms of Ectodomain SheddingTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 6 2010Kazutaka Hayashida Abstract The extracellular domain of several membrane-anchored proteins is released from the cell surface as soluble proteins through a regulated proteolytic mechanism called ectodomain shedding. Cells use ectodomain shedding to actively regulate the expression and function of surface molecules, and modulate a wide variety of cellular and physiological processes. Ectodomain shedding rapidly converts membrane-associated proteins into soluble effectors and, at the same time, rapidly reduces the level of cell surface expression. For some proteins, ectodomain shedding is also a prerequisite for intramembrane proteolysis, which liberates the cytoplasmic domain of the affected molecule and associated signaling factors to regulate transcription. Ectodomain shedding is a process that is highly regulated by specific agonists, antagonists, and intracellular signaling pathways. Moreover, only about 2% of cell surface proteins are released from the surface by ectodomain shedding, indicating that cells selectively shed their protein ectodomains. This review will describe the molecular and cellular mechanisms of ectodomain shedding, and discuss its major functions in lung development and disease. Anat Rec, 293:925,937, 2010. © 2010 Wiley,Liss, Inc. [source] A conserved domain in type III secretion links the cytoplasmic domain of InvA to elements of the basal bodyACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2010Mirjana Lilic Protein type III secretion systems (T3SSs) are organic nanosyringes that achieve an energy-dependent translocation of bacterial proteins through the two membranes of Gram-negative organisms. Examples include the pathogenic systems of animals, plants and symbiotic bacteria that inject factors into eukaryotic cells, and the flagellar export system that secretes flagellin. T3SSs possess a core of several membrane-associated proteins that are conserved across all known bacterial species that use this system. The Salmonella protein InvA is one of the most highly conserved proteins of this core of critical T3SS components. The crystal structure of a C-terminal domain of InvA reveals an unexpected homology to domains that have been repeatedly found as building blocks of other elements of the T3SS apparatus. This suggests the surprising hypothesis that evolution has produced a significant component of the apparatus structure through a series of gene-duplication and gene-rearrangement events. [source] The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene productACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2002Beom Sik Kang Neurofibromatosis type 2 is an autosomal dominant disorder characterized by central nervous system tumors. The cause of the disease has been traced to mutations in the gene coding for a protein that is alternately called merlin or schwannomin and is a member of the ERM family (ezrin, radixin and moesin). The ERM proteins link the cytoskeleton to the cell membrane either directly through integral membrane proteins or indirectly through membrane-associated proteins. In this paper, the expression, purification, crystallization and crystal structure of the N-terminal domain of merlin are described. The crystals exhibit the symmetry of space group P212121, with two molecules in the asymmetric unit. The recorded diffraction pattern extends to 1.8,Å resolution. The structure was solved by the molecular-replacement method and the model was refined to a conventional R value of 19.3% (Rfree = 22.7%). The N-terminal domain of merlin closely resembles those described for the corresponding domains in moesin and radixin and exhibits a cloverleaf architecture with three distinct subdomains. The structure allows a better rationalization of the impact of selected disease-causing mutations on the integrity of the protein. [source] |