Membrane Polarization (membrane + polarization)

Distribution by Scientific Domains


Selected Abstracts


Melatonin increases stress fibers and focal adhesions in MDCK cells: participation of Rho-associated kinase and protein kinase C

JOURNAL OF PINEAL RESEARCH, Issue 2 2007
Gerardo Ramírez-Rodríguez
Abstract:, Melatonin cyclically modifies water transport measured as dome formation in MDCK cells. An optimal increase in water transport, concomitant with elevated stress fiber (SF) formation, occurs at nocturnal plasma melatonin concentrations (1 nm) after 6 hr of incubation. Blockage in melatonin-elicited dome formation was observed with protein kinase C (PKC) inhibitors. Despite, this information on the precise mechanism by which melatonin increases SF formation involved in water transport is not known. Focal adhesion contacts (FAC) are cytoskeletal structures, which participate in MDCK membrane polarization. SF organization and vinculin phosphorylation are involved in FAC assembly and both processes are mediated by PKC, an enzyme stimulated by melatonin; in these processes also involved is Rho-associated kinase (ROCK). Thus, we studied FAC formation and the ROCK/PKC pathway as the mechanism by which melatonin increases SF formation and water transport. The results showed that 1 nM melatonin and the PKC agonist phorbol-12-miristate-13-acetate increased FAC. The PKC inhibitor GF109203x, and the ROCK inhibitor Y27632, blocked increased FAC caused by melatonin. ROCK and PKC activities, vinculin phosphorylation and FAC formation were increased with melatonin. The PKC inhibitor, GF109203x, abolished both melatonin stimulated FAC in whole cells and ROCK activity, indicating that ROCK is a downstream kinase in the melatonin-stimulated PKC pathway in MDCK cultured cells that causes an increase in SF and FAC formation. Data also document that melatonin modulates water transport through modifications of the cytoskeletal structure. [source]


Lactobacillus reuteri ingestion and IKCa channel blockade have similar effects on rat colon motility and myenteric neurones

NEUROGASTROENTEROLOGY & MOTILITY, Issue 1 2010
B. Wang
Abstract, Background, We have previously shown that ingestion of Lactobacillus reuteri may modulate colonic enteric neuron activity but with unknown effects on colon motility. The aim of the present report was to elucidate the neuronal mechanisms of action of the probiotic by comparing the effects on motility of L. reuteri ingestion with blockade of a specific ionic current in enteric neurons. Methods, We have used intraluminal pressure recordings from ex vivo rat colon segments and whole cell patch clamp recordings from neurons of rat longitudinal muscle myenteric plexus preparations to investigate the effects of L. reuteri and TRAM-34 on colon motility and neurophysiology. The effects of daily feeding of 109L. reuteri bacteria or acute application of TRAM-34 on threshold fluid filling pressure or pulse pressure was measured. Key Results,Lactobacillus reuteri increased intraluminal fluid filling pressure thresholds for evoking pressure pulses by 51% from 0.47 ± 0.17 hPa; the probiotic also decreased the pulse pressure amplitudes, but not frequency, by 18% from 3.91 ± 0.52 hPa. The intermediate conductance calcium-dependent potassium (IKCa) channel blocker TRAM-34 (3 ,mol L,1) increased filling threshold pressure by 43% from 0.52 ± 0.22 hPa and reduced pulse pressure amplitude by 40% from 2.63 ± 1.11 hPa; contraction frequency was unaltered. TRAM-34 (3 ,mol L,1) reduced membrane polarization, leak conductance and the slow afterhyperpolarization current in 16/16 myenteric rat colon AH cells but 19/19 S cells were unaffected. Conclusions & Inferences, The present results are consistent with L. reuteri enhancing tonic inhibition of colon contractile activity by acting via the IKCa channel current in AH cells. [source]


Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of development

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2010
Malgorzata Czarna
Abstract In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2-D DIGE technology allowed the detection of around 2000 protein spots on each 2-D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CMÔRos showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation-induced development. [source]


Blockade of KATP Channels Reduces Endothelial Hyperpolarization and Leukocyte Recruitment upon Reperfusion After Hypoxia

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2009
M. Figura
Ischemia/reperfusion injury in renal transplantation leads to slow or initial nonfunction, and predisposes to acute and chronic rejection. In fact, severe ischemia reperfusion injury can significantly reduce graft survival, even with modern immunosuppressive agents. One of the mechanisms by which ischemia/reperfusion causes injury is activation of endothelial cells resulting in inflammation. Although several therapies can be used to prevent leukocyte recruitment to ischemic vessels (e.g. antiadhesion molecule antibodies), there have been no clinical treatments reported that can prevent initial immediate neutrophil recruitment upon reperfusion. Using intravital microscopy, we describe abrogation of immediate neutrophil recruitment to ischemic microvessels by the KATP antagonist glibenclamide (GlyburideÔ). Further, we show that glibenclamide can reduce leukocyte recruitment in vitro under physiologic flow conditions. ATP-regulated potassium channels (KATP) are important in the control of cell membrane polarization. Here we describe profound hyperpolarization of endothelial cells during hypoxia, and the reduction of this hyperpolarization using glibenclamide. These findings suggest that control of endothelial membrane potential during ischemia may be an important therapeutic tool in avoiding ischemia/reperfusion injury, and therefore, enhancing transplant long-term function. [source]