Home About us Contact | |||
Membrane Mimetic (membrane + mimetic)
Selected AbstractsLipid bilayers: an essential environment for the understanding of membrane proteinsMAGNETIC RESONANCE IN CHEMISTRY, Issue S1 2007Richard C. Page Abstract Membrane protein structure and function is critically dependent on the surrounding environment. Consequently, utilizing a membrane mimetic that adequately models the native membrane environment is essential. A range of membrane mimetics are available but none generates a better model of native aqueous, interfacial, and hydrocarbon core environments than synthetic lipid bilayers. Transmembrane ,-helices are very stable in lipid bilayers because of the low water content and low dielectric environment within the bilayer hydrocarbon core that strengthens intrahelical hydrogen bonds and hinders structural rearrangements within the transmembrane helices. Recent evidence from solid-state NMR spectroscopy illustrates that transmembrane ,-helices, both in peptides and full-length proteins, appear to be highly uniform based on the observation of resonance patterns in PISEMA spectra. Here, we quantitate for the first time through simulations what we mean by highly uniform structures. Indeed, helices in transmembrane peptides appear to have backbone torsion angles that are uniform within ± 4° . While individual helices can be structurally stable due to intrahelical hydrogen bonds, interhelical interactions within helical bundles can be weak and nonspecific, resulting in multiple packing arrangements. Some helical bundles have the capacity through their amino acid composition for hydrogen bonding and electrostatic interactions to stabilize the interhelical conformations and solid-state NMR data is shown here for both of these situations. Solid-state NMR spectroscopy is unique among the techniques capable of determining three-dimensional structures of proteins in that it provides the ability to characterize structurally the membrane proteins at very high resolution in liquid crystalline lipid bilayers. Copyright © 2007 John Wiley & Sons, Ltd. [source] Synthesis and secondary structure of loop 4 of myelin proteolipid protein: effect of a point mutation found in Pelizaeus-Merzbacher diseaseCHEMICAL BIOLOGY & DRUG DESIGN, Issue 3 2005E. Trifilieff Abstract:, To study the effects of a point mutation found in Pelizaeus-Merzbacher disease (PMD) on the physicochemical and structural properties of the extracellular loop 4 of the myelin proteolipid protein (PLP), we synthesized the peptide PLP(181,230)Pro215 and one mutant PLP(181,230)Ser215 with regioselective formation of the two disulphide bridges Cys200 -Cys219 and Cys183 -Cys227. As conventional amino acid building blocks failed to give crude peptides of good quality we had to optimize the synthesis by introducing pseudoproline dipeptide building blocks during the peptide elongation. In peptide Pro215 the first bridge Cys200,Cys219 was obtained after air oxidation, but in peptide Ser215 because of aggregation, dimethyl sulfoxide (DMSO) oxidation had to be used. The second bridge Cys183,Cys227 was obtained by iodine oxidation of both Cys (acetamidomethyl, Acm)-protected peptides. The secondary structures of the parent and mutant loops were analysed by circular dichroism (CD) in the presence of trifluoroethanol (TFE) and sodium dodecyl sulphate (SDS) as a membrane mimetic. Analysis of the spectra showed that the content of , -helix and , -sheet varied differently for both peptides in TFE and SDS solutions, demonstrating the sensitivity of their conformation to the environment and the differences in their secondary structure. The ability of both peptides to insert into the SDS micelles was assayed by intrinsic tryptophan fluorescence. [source] Lipid bilayers: an essential environment for the understanding of membrane proteinsMAGNETIC RESONANCE IN CHEMISTRY, Issue S1 2007Richard C. Page Abstract Membrane protein structure and function is critically dependent on the surrounding environment. Consequently, utilizing a membrane mimetic that adequately models the native membrane environment is essential. A range of membrane mimetics are available but none generates a better model of native aqueous, interfacial, and hydrocarbon core environments than synthetic lipid bilayers. Transmembrane ,-helices are very stable in lipid bilayers because of the low water content and low dielectric environment within the bilayer hydrocarbon core that strengthens intrahelical hydrogen bonds and hinders structural rearrangements within the transmembrane helices. Recent evidence from solid-state NMR spectroscopy illustrates that transmembrane ,-helices, both in peptides and full-length proteins, appear to be highly uniform based on the observation of resonance patterns in PISEMA spectra. Here, we quantitate for the first time through simulations what we mean by highly uniform structures. Indeed, helices in transmembrane peptides appear to have backbone torsion angles that are uniform within ± 4° . While individual helices can be structurally stable due to intrahelical hydrogen bonds, interhelical interactions within helical bundles can be weak and nonspecific, resulting in multiple packing arrangements. Some helical bundles have the capacity through their amino acid composition for hydrogen bonding and electrostatic interactions to stabilize the interhelical conformations and solid-state NMR data is shown here for both of these situations. Solid-state NMR spectroscopy is unique among the techniques capable of determining three-dimensional structures of proteins in that it provides the ability to characterize structurally the membrane proteins at very high resolution in liquid crystalline lipid bilayers. Copyright © 2007 John Wiley & Sons, Ltd. [source] Backbone structure of a small helical integral membrane protein: A unique structural characterizationPROTEIN SCIENCE, Issue 1 2009Richard C. Page Abstract The structural characterization of small integral membrane proteins pose a significant challenge for structural biology because of the multitude of molecular interactions between the protein and its heterogeneous environment. Here, the three-dimensional backbone structure of Rv1761c from Mycobacterium tuberculosis has been characterized using solution NMR spectroscopy and dodecylphosphocholine (DPC) micelles as a membrane mimetic environment. This 127 residue single transmembrane helix protein has a significant (10 kDa) C-terminal extramembranous domain. Five hundred and ninety distance, backbone dihedral, and orientational restraints were employed resulting in a 1.16 Å rmsd backbone structure with a transmembrane domain defined at 0.40 Å. The structure determination approach utilized residual dipolar coupling orientation data from partially aligned samples, long-range paramagnetic relaxation enhancement derived distances, and dihedral restraints from chemical shift indices to determine the global fold. This structural model of Rv1761c displays some influences by the membrane mimetic illustrating that the structure of these membrane proteins is dictated by a combination of the amino acid sequence and the protein's environment. These results demonstrate both the efficacy of the structural approach and the necessity to consider the biophysical properties of membrane mimetics when interpreting structural data of integral membrane proteins and, in particular, small integral membrane proteins. [source] |