Membrane Integration (membrane + integration)

Distribution by Scientific Domains


Selected Abstracts


Leptospira: a spirochaete with a hybrid outer membrane

MOLECULAR MICROBIOLOGY, Issue 4 2010
David A. Haake
Summary Leptospira is a genus of spirochaetes that includes organisms with a variety of lifestyles ranging from aquatic saprophytes to invasive pathogens. Adaptation to a wide variety of environmental conditions has required leptospires to acquire a large genome and a complex outer membrane with features that are unique among bacteria. The most abundant surface-exposed outer membrane proteins are lipoproteins that are integrated into the lipid bilayer by amino-terminal fatty acids. In contrast to many spirochaetes, the leptospiral outer membrane also includes lipopolysaccharide and many homologues of well-known beta-barrel transmembrane outer membrane proteins. Research on leptospiral transmembrane outer membrane proteins has lagged behind studies of lipoproteins because of their aberrant behaviour by Triton X-114 detergent fractionation. For this reason, transmembrane outer membrane proteins are best characterized by assessing membrane integration and surface exposure. Not surprisingly, some outer membrane proteins that mediate host,pathogen interactions are strongly regulated by conditions found in mammalian host tissues. For example, the leptospiral immunoglobulin-like (Lig) repeat proteins are dramatically induced by osmolarity and mediate interactions with host extracellular matrix proteins. Development of molecular genetic tools are making it possible to finally understand the roles of these and other outer membrane proteins in mechanisms of leptospiral pathogenesis. [source]


A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase

MOLECULAR MICROBIOLOGY, Issue 5 2003
Kostas Hatzixanthis
Summary A group of bacterial exported proteins are synthesized with N-terminal signal peptides containing a SRRxFLK ,twin-arginine' amino acid motif. Proteins bearing twin-arginine signal peptides are targeted post-translationally to the twin-arginine translocation (Tat) system which transports folded substrates across the inner membrane. In Escherichia coli, most integral inner membrane proteins are assembled by a co-translational process directed by SRP/FtsY, the SecYEG translocase, and YidC. In this work we define a novel class of integral membrane proteins assembled by a Tat-dependent mechanism. We show that at least five E. coli Tat substrate proteins contain hydrophobic C-terminal transmembrane helices (or ,C-tails'). Fusions between the identified transmembrane C-tails and the exclusively Tat-dependent reporter proteins TorA and SufI render the resultant chimeras membrane-bound. Export-linked signal peptide processing and membrane integration of the chimeras is shown to be both Tat-dependent and YidC-independent. It is proposed that the mechanism of membrane integration of proteins by the Tat system is fundamentally distinct from that employed for other bacterial inner membrane proteins. [source]


Mistic: Cellular localization, solution behavior, polymerization, and fibril formation,

PROTEIN SCIENCE, Issue 7 2009
Hay Dvir
Abstract Mistic represents a family of unique membrane-associating proteins originally found in Bacillus subtilis (M110). As a fusion partner, it has been shown to assist overexpression of foreign integral membrane proteins in E. coli. We have expressed shorter Mistic homologs from other Bacillus species and surprisingly, unlike M110, found them abundant in the cytoplasm. These Mistic homologs including the corresponding shorter sequence (amino acids 27 through 110 of M110) exist as multimeric assemblies in solution in the absence of detergent. Crystals of Mistic from B. leicheniformis (M2) diffracted to 3.2 Å resolution, indicating that it exists as a multimer in the crystalline state as well. Moreover, we show that although M2 is mostly ,-helical, it tends to polymerize and form fibrils. Such oligomerization could potentially mask the charged surface of the monomeric Mistic to assist membrane integration. [source]


Genetic analysis of G protein-coupled receptor expression in Escherichia coli: Inhibitory role of DnaJ on the membrane integration of the human central cannabinoid receptor

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009
Georgios Skretas
Abstract The overexpression of G protein-coupled receptors (GPCRs) and of many other heterologous membrane proteins in simple microbial hosts, such as the bacterium Escherichia coli, often results in protein mistargeting, aggregation into inclusion bodies or cytoplasmic degradation. Furthermore, membrane protein production is very frequently accompanied by severe cell toxicity. In this work, we have employed a genetic strategy to isolate E. coli mutants that produce markedly increased amounts of the human central cannabinoid receptor (CB1), a pharmacologically significant GPCR that expresses very poorly in wild-type E. coli. By utilizing a CB1 fusion with the green fluorescent protein (GFP) and fluorescence-activated cell sorting (FACS), we screened an E. coli transposon library and identified an insertion in dnaJ that resulted in a large increase in CB1-GFP fluorescence and a dramatic enhancement in bacterial production of membrane-integrated CB1. Furthermore, the dnaJ::Tn5 inactivation suppressed the severe cytotoxicity associated with CB1 production. This revealed an unexpected inhibitory role of the chaperone/ co-chaperone DnaJ in the protein folding or membrane insertion of bacterially produced CB1. Our strategy can be easily adapted to identify expression bottlenecks for different GPCRs or any other integral membrane protein, provide useful and unanticipated mechanistic insights, and assist in the construction of genetically engineered E. coli strains for efficient heterologous membrane protein production. Biotechnol. Bioeng. 2009;102: 357,367. © 2008 Wiley Periodicals, Inc. [source]