Membrane H+ (membrane + h+)

Distribution by Scientific Domains

Kinds of Membrane H+

  • plasma membrane h+


  • Selected Abstracts


    Mtha1, a Plasma Membrane H+ -ATPase Gene from Medicago truncatula, Shows Arbuscule-Specific Induced Expression in Mycorrhizal Tissue

    PLANT BIOLOGY, Issue 6 2002
    F. Krajinski
    Abstract: Transport processes between plant and fungal cells are key elements in arbuscular mycorrhiza (AM), where H+ -ATPases are considered to be involved in active uptake of nutrients from the symbiotic interface. Genes encoding H+ -ATPases were identified in the genome of Medicago truncatula and three cDNA fragments of the H+ -ATPase gene family (Mtha1 - 3) were obtained by RT-PCR using RNA from M. truncatula mycorrhizal roots as template. While Mtha2 and Mtha3 appeared to be constitutively expressed in roots and unaffected by AM development, transcripts of Mtha1 could only be detected in AM tissues and not in controls. Further analyses by RT-PCR revealed that Mtha1 transcripts are not detectable in shoots and phosphate availability did not affect RNA accumulation of the gene. Localization of transcripts by in situ hybridization on AM tissues showed that Mtha1 RNA accumulates only in cells containing fungal arbuscules. This is the first report of arbuscule-specific induced expression of a plant H+ -ATPase gene in mycorrhizal tissues. [source]


    Modeling the three-dimensional structure of H+ -ATPase of Neurospora crassa

    FEBS JOURNAL, Issue 21 2002
    Proposal for a proton pathway from the analysis of internal cavities
    Homology modeling in combination with transmembrane topology predictions are used to build the atomic model of Neurospora crassa plasma membrane H+ -ATPase, using as template the 2.6 Å crystal structure of rabbit sarcoplasmic reticulum Ca2+ -ATPase [Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. (2000) Nature 405, 647,655]. Comparison of the two calcium-binding sites in the crystal structure of Ca2+ -ATPase with the equivalent region in the H+ -ATPase model shows that the latter is devoid of most of the negatively charged groups required to bind the cations, suggesting a different role for this region. Using the built model, a pathway for proton transport is then proposed from computed locations of internal polar cavities, large enough to contain at least one water molecule. As a control, the same approach is applied to the high-resolution crystal structure of halorhodopsin and the proton pump bacteriorhodopsin. This revealed a striking correspondence between the positions of internal polar cavities, those of crystallographic water molecules and, in the case of bacteriorhodopsin, the residues mediating proton translocation. In our H+ -ATPase model, most of these cavities are in contact with residues previously shown to affect coupling of proton translocation to ATP hydrolysis. A string of six polar cavities identified in the cytoplasmic domain, the most accurate part of the model, suggests a proton entry path starting close to the phosphorylation site. Strikingly, members of the haloacid dehalogenase superfamily, which are close structural homologs of this domain but do not share the same function, display only one polar cavity in the vicinity of the conserved catalytic Asp residue. [source]


    Carbonyl cyanide m -chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H+ -ATPase in the yeast Saccharomyces cerevisiae

    FEMS YEAST RESEARCH, Issue 4 2008
    Michele B.P. Pereira
    Abstract The plasma membrane H+ -ATPase from Saccharomyces cerevisiae is an enzyme that plays a very important role in the yeast physiology. The addition of protonophores, such as 2,4-dinitrophenol (DNP) and carbonyl cyanide m -chlorophenylhydrazone (CCCP), also triggers a clear in vivo activation of this enzyme. Here, we demonstrate that CCCP-induced activation of the plasma membrane H+ -ATPase shares some similarities with the sugar-induced activation of the enzyme. Phospholipase C and protein kinase C activities are essential for this activation process while Gpa2p, a G protein involved in the glucose-induced activation of the ATPase, is not required. CCCP also induces a phospholipase C-dependent increase in intracellular calcium. Moreover, we show that the availability of extracellular calcium is required for CCCP stimulation of H+ -ATPase, suggesting a possible connection between calcium signaling and activation of ATPase. [source]


    Evaluation of the antimicrobial activity of ebselen: Role of the yeast plasma membrane H+ -ATPase

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 5 2007
    Grace Chan
    Abstract Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is a selenium-containing antioxidant demonstrating anti-inflammatory and cytoprotective properties in mammalian cells and cytotoxicity in lower organisms. The mechanism underlying the antimicrobial activity of ebselen remains unclear. It has recently been proposed that, in lower organisms like yeast, the plasma membrane H+ -ATPase (Pma1p) could serve as a potential target for this synthetic organoselenium compound. Using yeast and bacteria, the present study found ebselen to inhibit microbial growth in a concentration- and time-dependent manner, and yeast and Gram-positive bacteria to be more sensitive to this action (IC50 , 2,5 ,M) than Gram-negative bacteria (IC50 < 80 ,M). Washout experiments and scanning electron microscopic analysis revealed ebselen to possess fungicidal activity. In addition, ebselen was found to inhibit medium acidification by PMA1 -proficient haploid yeast in a concentration-dependent manner. Additional studies comparing PMA1 (+/,) and PMA1 (+/+) diploid yeast cells revealed the mutant to be more sensitive to treatment with ebselen than the wild type. Ebselen also inhibited the ATPase activity of Pma1p from S. cerevisae in a concentration-dependent manner. The interaction of ebselen with the sulfhydryl-containing compounds L -cysteine and reduced glutathione resulted in the complete and partial prevention, respectively, of the inhibition of Pma1p ATPase activity by ebselen. Taken together, these results suggest that the fungicidal action of ebselen is due, at least in part, to interference with both the proton-translocating function and the ATPase activity of the plasma membrane H+ -ATPase. © 2007 Wiley Periodicals, Inc. J Biochem Mol Toxicol 21:252,264, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20189 [source]


    Adaptation of plasma membrane H+ -ATPase of rice roots to low pH as related to ammonium nutrition

    PLANT CELL & ENVIRONMENT, Issue 10 2009
    YIYONG ZHU
    ABSTRACT The preference of paddy rice for NH4+ rather than NO3 - is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. This study investigated the acclimation of plasma membrane H+ -ATPase of rice root to low pH. Rice seedlings were grown either with NH4+ or NO3 - . For both nitrogen forms, the pH value of nutrient solutions was gradually adjusted to pH 6.5 or 3.0. After 4 d cultivation, hydrolytic H+ -ATPase activity, Vmax, Km, H+ -pumping activity, H+ permeability and pH gradient across the plasma membrane were significantly higher in rice roots grown at pH 3.0 than at 6.5, irrespective of the nitrogen forms supplied. The higher activity of plasma membrane H+ -ATPase of adapted rice roots was attributed to the increase in expression of OSA1, OSA3, OSA7, OSA8 and OSA9 genes, which resulted in an increase of H+ -ATPase protein concentration. In conclusion, a high regulation of various plasma membrane H+ -ATPase genes is responsible for the adaptation of rice roots to low pH. This mechanism may be partly responsible for the preference of rice plants to NH4+ nutrition. [source]


    New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L.

    PLANT CELL & ENVIRONMENT, Issue 8 2004
    S. SALLEO
    ABSTRACT Xylem recovery from embolism was studied in Laurus nobilis L. stems that were induced to cavitate by combining negative xylem pressure potentials (PX = ,1.1 MPa) with positive air pressures (PC) applied using a pressure collar. Xylem refilling was measured by recording the percentage loss of hydraulic conductance (PLC) with respect to the maximum 2 min, 20 min and 15 h after pressure release. Sodium orthovanadate (an inhibitor of many ATP-ases) strongly inhibited xylem refilling while fusicoccin (a stimulator of the plasma membrane H+ -ATPase) promoted complete embolism reversal. So, the refilling process was interpreted to result from energy-dependent mechanisms. Stem girdling induced progressively larger inhibition to refilling the nearer to the embolized stem segment phloem was removed. The starch content of wood parenchyma was estimated as percentages of ray and vasicentric cells with high starch content with respect to the total, before and after stem embolism was induced. A closely linear positive relationship was found to exist between recovery from PLC and starch hydrolysis. This, was especially evident in vasicentric cells. A mechanism for xylem refilling based upon starch to sugar conversion and transport into embolized conduits, assisted by phloem pressure-driven radial mass flow is proposed. [source]


    Humic acids crossinteractions with root and organic acids

    ANNALS OF APPLIED BIOLOGY, Issue 2 2008
    L.P. Canellas
    Abstract The apparent high molecular mass of humic acids (HAs) hardly seems compatible with their direct effects in plant physiology. However, previous evidence has indicated that HAs are non-covalent associations of relatively small molecules, which can be broken down by the action of organic acids. The aim of this work was to evaluate the effects of organic acids on the structure of HAs by spectroscopy and on their bioactivity by following the responses of maize root growth. Changes in the exudation of organic acids from maize seedlings treated with HAs at 50 mg C L,1 were evaluated by high-performance liquid chromatography. The results are in agreement with the concept that HAs are chemical aggregates that acquire characteristics typical of low-molecular-mass humic substances when exposed to organic acids exuded by the roots. Maize seedlings grown in solutions supplemented with HAs plus citric acid at 0.0005, 0.005 and 0.05 mM exhibited significant changes in their root area, primary root length, number of lateral roots and lateral root density and increases in plasma membrane H+ -ATPase activity. Furthermore, the root exudation profile of plants treated with HAs exhibited an increase in the efflux of oxalic and citric acids, with a concurrent decrease in malic and succinic acids. These data reveal a crosstalk between HAs and plants where the exudation of organic acids from the roots influences and is influenced by bioactive molecules released from HAs during root development. [source]