Home About us Contact | |||
Membrane Excitability (membrane + excitability)
Selected AbstractsContribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2003Joanne L. Leaney Abstract G protein-gated inwardly rectifying potassium (GIRK) channels are found in neurons, atrial myocytes and neuroendocrine cells. A characteristic feature is their activation by stimulation of Gi/o -coupled receptors. In central neurons, for example, they are activated by adenosine and GABA and, as such, they play an important role in neurotransmitter-mediated regulation of membrane excitability. The channels are tetrameric assemblies of Kir3.x subunits (Kir3.1,3.4 plus splice variants). In this study I have attempted to identify the channel subunits which contribute to the native GIRK current recorded from primary cultured rat hippocampal pyramidal neurons. Reverse transcriptase,polymerase chain reaction revealed the expression of mRNA for Kir3.1, 3.2A, 3.2C and 3.3 subunits and confocal immunofluorescence microscopy was used to investigate their expression patterns. Diffuse staining was observed on both cell somata and dendrites for Kir3.1 and Kir3.2A yet that for Kir3.2C was weaker and punctate. Whole-cell patch clamp recordings were used to record GIRK currents from hippocampal pyramidal neurons which were identified on the basis of inward rectification, dependence of reversal potential on external potassium concentration and sensitivity to tertiapin. The GIRK currents were enhanced by the stimulation of a number of Gi/o -coupled receptors and were inhibited by pertussis toxin. In order to ascertain which Kir3.x subunits were responsible for the native GIRK current I compared the properties with those of the cloned Kir3.1 + 3.2A and Kir3.1 + 3.2C channels heterologously expressed in HEK293 cells. [source] The changes in neuromuscular excitability with normobaric hyperoxia in humansEXPERIMENTAL PHYSIOLOGY, Issue 1 2010Christelle Brerro-Saby Based on previous observations in hyperbaric hyperoxia, we hypothesized that normobaric hyperoxia, often used during general anaesthesia and resuscitation, might also induce a neuromuscular excitability. In heathy volunteers, we studied the consequences of a 50 min period of pure oxygen breathing on the neuromuscular conduction time (CT), the amplitude of the compound evoked muscle potential (M-wave), the latency and amplitude of the Hoffman reflex (H reflex) and the electromyographic tonic vibratory response (TVR) of the flexor digitorum superficialis muscle to explore the proprioceptive reflex loop. Hyperoxia-induced oxidative stress was measured by the changes in blood markers of lipid peroxidation (thiobarbituric acid reactive substances, TBARS) and antioxidant response (reduced ascorbic acid, RAA). During hyperoxia, the M-wave amplitude increased, both CT and H reflex latency were shortened, and the H reflex amplitude increased. By contrast, TVR significantly decreased. Concomitantly, an oxidative stress was assessed by increased TBARS and decreased RAA levels. This study shows the existence of dual effects of hyperoxia, which facilitates the muscle membrane excitability, nerve conduction and spinal reflexes, but reduces the gain of the proprioceptive reflex loop. The activation of the group IV muscle afferents by hyperoxia and the resulting oxidative stress might explain the TVR depression. [source] Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exerciseJOURNAL OF INTERNAL MEDICINE, Issue 3 2005Y. JAMMES Abstract. Objectives., Because the muscle response to incremental exercise is not well documented in patients suffering from chronic fatigue syndrome (CFS), we combined electrophysiological (compound-evoked muscle action potential, M wave), and biochemical (lactic acid production, oxidative stress) measurements to assess any muscle dysfunction in response to a routine cycling exercise. Design., This case,control study compared 15 CFS patients to a gender-, age- and weight-matched control group (n = 11) of healthy subjects. Interventions., All subjects performed an incre-mental cycling exercise continued until exhaustion. Main outcome measures., We measured the oxygen uptake (Vo2), heart rate (HR), systemic blood pressure, percutaneous O2 saturation (SpO2), M-wave recording from vastus lateralis, and venous blood sampling allowing measurements of pH (pHv), PO2 (PvO2), lactic acid (LA), and three markers of the oxidative stress (thiobarbituric acid-reactive substances, TBARS, reduced glutathione, GSH, and ascorbic acid, RAA). Results., Compared with control, in CFS patients (i) the slope of Vo2 versus work load relationship did not differ from control subjects and there was a tendency for an accentuated PvO2 fall at the same exercise intensity, indicating an increased oxygen uptake by the exercising muscles; (ii) the HR and blood pressure responses to exercise did not vary; (iii) the anaerobic pathways were not accentuated; (iv) the exercise-induced oxidative stress was enhanced with early changes in TBARS and RAA and enhanced maximal RAA consumption; and (v) the M-wave duration markedly increased during the recovery period. Conclusions., The response of CFS patients to incremental exercise associates a lengthened and accentuated oxidative stress together with marked alterations of the muscle membrane excitability. These two objective signs of muscle dysfunction are sufficient to explain muscle pain and postexertional malaise reported by our patients. [source] Dependence of Hyperpolarisation-Activated Cyclic Nucleotide-Gated Channel Activity on Basal Cyclic Adenosine Monophosphate Production in Spontaneously Firing GH3 CellsJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2006K. Kretschmannova Abstract The hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels play a distinct role in the control of membrane excitability in spontaneously active cardiac and neuronal cells. Here, we studied the expression and role of HCN channels in pacemaking activity, Ca2+ signalling, and prolactin secretion in GH3 immortalised pituitary cells. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of mRNA transcripts for HCN2, HCN3 and HCN4 subunits in these cells. A hyperpolarisation of the membrane potential below ,,60 mV elicited a slowly activating voltage-dependent inward current (Ih) in the majority of tested cells, with a half-maximal activation voltage of ,89.9 ± 4.2 mV and with a time constant of 1.4 ± 0.2 s at ,120 mV. The bath application of 1 mM Cs+, a commonly used inorganic blocker of Ih, and 100 µM ZD7288, a specific organic blocker of Ih, inhibited Ih by 90 ± 4.1% and 84.3 ± 1.8%, respectively. Receptor- and nonreceptor-mediated activation of adenylyl and soluble guanylyl cyclase and the addition of a membrane permeable cyclic adenosine monophosphate (cAMP) analogue, 8-Br-cAMP, did not affect Ih. Inhibition of basal adenylyl cyclase activity, but not basal soluble guanylyl cyclase activity, led to a reduction in the peak amplitude and a leftward shift in the activation curve of Ih by 23.7 mV. The inhibition of the current was reversed by stimulation of adenylyl cyclase with forskolin and by the addition of 8-Br-cAMP, but not 8-Br-cGMP. Application of Cs+ had no significant effect on the resting membrane potential or electrical activity, whereas ZD7288 exhibited complex and Ih -independent effects on spontaneous electrical activity, Ca2+ signalling, and prolactin release. These results indicate that HCN channels in GH3 cells are under tonic activation by basal level of cAMP and are not critical for spontaneous firing of action potentials. [source] Anti-inflammatory properties of local anesthetics and their present and potential clinical implicationsACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 3 2006J. Cassuto Development of new local anesthetic agents has been focused on the potency of their nerve-blocking effects, duration of action and safety and has resulted in a substantial number of agents in clinical use. It is well established and well documented that the nerve blocking effects of local anesthetics are secondary to their interaction with the Na+ channels thereby blocking nerve membrane excitability and the generation of action potentials. Accumulating data suggest however that local anesthetics also posses a wide range of anti-inflammatory actions through their effects on cells of the immune system, as well as on other cells, e.g. microorganisms, thrombocytes and erythrocytes. The potent anti-inflammatory properties of local anesthetics, superior in several aspects to traditional anti-inflammatory agents of the NSAID and steroid groups and with fewer side-effects, has prompted clinicians to introduce them in the treatment of various inflammation-related conditions and diseases. They have proved successful in the treatment of burn injuries, interstitial cystitis, ulcerative proctitis, arthritis and herpes simplex infections. The detailed mechanisms of action are not fully understood but seem to involve a reversible interaction with membrane proteins and lipids thus regulating cell metabolic activity, migration, exocytosis and phagocytosis. [source] Cortical excitability in DYT-11 positive myoclonus dystoniaMOVEMENT DISORDERS, Issue 5 2008Sabine Meunier MD Abstract Myoclonus-dystonia (M-D) is an autosomal dominant movement disorder caused by mutations in the ,-sarcoglycan gene (DYT11). We explore pathophysiological characteristics of M-D with the hypothesis that they may be different from those of sporadic or genetic dystonia. We compared five carriers of the DYT11 gene mutation and 10 healthy controls. Using transcranial magnetic stimulation, we measured parameters assessing cortical membrane excitability (active motor threshold, aMT) and synaptic activity (short interval, sICI) and afferent (AI) intracortical inhibitions and their interaction. aMT was significantly higher in the DYT11 gene carriers than in normal subjects. The others parameters (sICI, AI and their interaction) were not different between the two groups. In DYT11 gene carriers cortical membrane excitability was impaired while parameters assessing cortical synaptic activity were normal. Opposite results have been obtained in focal sporadic and generalized DYT1 dystonias. © 2008 Movement Disorder Society [source] Effects of age and gene dose on skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinaseMUSCLE AND NERVE, Issue 6 2002Sita Reddy PhD Abstract Myotonic muscular dystrophy (DM) is characterized by abnormal skeletal muscle Na channel gating and reduced levels of myotonic dystrophy protein kinase (DMPK). Electrophysiological measurements show that mice deficient in Dmpk have reduced Na currents in muscle. We now find that the Na channel expression level is normal in mouse muscle partially or completely deficient in Dmpk. Reduced current amplitudes are not changed by age or gene dose, and the reduction is not due to changes in macroscopic or microscopic gating kinetics. The mechanism of abnormal membrane excitability in DM may in part be silencing of muscle Na channels due to Dmpk deficiency. © 2002 Wiley Periodicals, Inc. Muscle Nerve 25: 000,000, 2002 [source] Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibresTHE JOURNAL OF PHYSIOLOGY, Issue 21 2009F. Rannou The myosin heavy chain (MHC) isoform determines the characteristics and shortening velocity of muscle fibres. The functional properties of the muscle fibre are also conditioned by its membrane excitability through the electrophysiological properties of sodium voltage-gated channels. Macropatch-clamp is used to study sodium channels in fibres from peroneus longus (PL) and soleus (Sol) muscles (Wistar rats, n= 8). After patch-clamp recordings, single fibres are identified by SDS-PAGE electrophoresis according to their myosin heavy chain isoform (slow type I and the three fast types IIa, IIx, IIb). Characteristics of sodium currents are compared (Student's t test) between fibres exhibiting only one MHC isoform. Four MHC isoforms are identified in PL and only type I in Sol single fibres. In PL, maximal sodium current (Imax), maximal sodium conductance (gNa,max) and time constants of activation and inactivation (,m and ,h) increase according to the scheme I,IIa,IIx,IIb (P < 0.05). ,m values related to sodium channel type and/or function, are similar in Sol I and PL IIb fibres (P= 0.97) despite different contractile properties. The voltage dependence of activation (Va,1/2) shows a shift towards positive potentials from Sol type I to IIa, IIx and finally IIb fibres from PL (P < 0.05). These data are consistent with the earlier recruitment of slow fibres in a fast-mixed muscle like PL, while slow fibres of postural muscle such as soleus could be recruited in the same ways as IIb fibres in a fast muscle. [source] Multiple forms of activity-dependent intrinsic plasticity in layer V cortical neurones in vivoTHE JOURNAL OF PHYSIOLOGY, Issue 13 2009Jeanne T. Paz Synaptic plasticity is classically considered as the neuronal substrate for learning and memory. However, activity-dependent changes in neuronal intrinsic excitability have been reported in several learning-related brain regions, suggesting that intrinsic plasticity could also participate to information storage. Compared to synaptic plasticity, there has been little exploration of the properties of induction and expression of intrinsic plasticity in an intact brain. Here, by the means of in vivo intracellular recordings in the rat we have examined how the intrinsic excitability of layer V motor cortex pyramidal neurones is altered following brief periods of repeated firing. Changes in membrane excitability were assessed by modifications in the discharge frequency versus injected current (F,I) curves. Most (,64%) conditioned neurones exhibited a long-lasting intrinsic plasticity, which was expressed either by selective changes in the current threshold or in the slope of the F,I curve, or by concomitant changes in both parameters. These modifications in the neuronal input,output relationship led to a global increase or decrease in intrinsic excitability. Passive electrical membrane properties were unaffected by the intracellular conditioning, indicating that intrinsic plasticity resulted from modifications of voltage-gated ion channels. These results demonstrate that neocortical pyramidal neurones can express in vivo a bidirectional use-dependent intrinsic plasticity, modifying their sensitivity to weak inputs and/or the gain of their input,output function. These multiple forms of experience-dependent intrinsic changes, which expand the computational abilities of individual neurones, could shape new network dynamics and thus might participate in the formation of mnemonic motor engrams. [source] Depletion of membrane cholesterol eliminates the Ca2+ -activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytesTHE JOURNAL OF PHYSIOLOGY, Issue 2 2007A. Shmygol Changes in membrane cholesterol content have potent effects on cell signalling and contractility in rat myometrium and other smooth muscles. We have previously shown that depletion of cholesterol with methyl-,-cyclodextrin (MCD) disrupts caveolar microdomains. The aim of this work was to determine the mechanism underlying the increase in Ca2+ signalling and contractility occurring in the myometrium with MCD. Patch clamp data obtained on freshly isolated myocytes from the uterus of day 19,21 rats showed that outward K+ current was significantly reduced by MCD. Membrane capacitance was also reduced. Cholesterol-saturated MCD had no effect on the amplitude of outward current suggesting that the reduction in the outward current was due to cholesterol depletion induced by MCD rather than a direct inhibitory action of MCD on the K+ channels. Confocal visualization of the membrane bound indicator Calcium Green C18, revealed internalization of the surface membrane with MCD treatment. Large conductance, Ca2+ -sensitive K+ channel proteins have been shown to localize to caveolae. When these channels were blocked by iberiotoxin outward current was significantly reduced in the uterine myocytes; MCD treatment reduced the density of outward current. Following reduction of outward current by MCD pretreatment, iberiotoxin was unable to produce any additional decrease in the current, suggesting a common target. MCD treatment also increased the amplitude and frequency of spontaneous rises in cytosolic Ca2+ level ([Ca2+]i transients) in isolated myocytes. In intact rat myometrium, MCD treatment increased Ca2+ signalling and contractility, consistent with previous findings, and this effect was also found to be reduced by BK channel inhibition. These data suggest that (1) disruption of cholesterol-rich microdomains and caveolae by MCD leads to a decrease in the BK channel current thus increasing cell excitability, and (2) the changes in membrane excitability produced by MCD underlie the changes found in Ca2+ signalling and uterine contractility. [source] |