Home About us Contact | |||
Membrane Depolarization (membrane + depolarization)
Selected AbstractsThe Salt-Inducible Kinase, SIK, Is Induced by Depolarization in BrainJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Jonathan D. Feldman Abstract: Membrane depolarization of neurons is thought to lead to changes in gene expression that modulate neuronal plasticity. We used representational difference analysis to identify a group of cDNAs that are induced by membrane depolarization or by forskolin, but not by neurotrophins or growth factors, in PC12 pheochromocytoma cells. One of these genes, SIK (salt- inducible kinase), is a member of the sucrose-nonfermenting 1 protein kinase/AMP-activated protein kinase protein kinase family that was also recently identified from the adrenal gland of rats treated with high-salt diets. SIK mRNA is induced up to eightfold in specific regions of the hippocampus and cortex in rats, following systemic kainic acid administration and seizure induction. [source] The effect of sevoflurane on glutamate release and uptake in rat cerebrocortical presynaptic terminalsACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 1 2002M. L. Vinje Background: Volatile anaesthetics exert their effect in the brain mainly by reducing synaptic excitability. Isoflurane abates excitation by reducing the release and increasing the uptake of transmitter glutamate into the presynaptic terminal. The exact molecular mechanisms exerting these effects, however, are not clear. Voltage-gated calcium channels have been proposed as the pharmacological target. The present study examines the effect of sevoflurane on synaptic glutamate release and free cytosolic calcium and the effect on high- and low-affinity uptake of L-glutamate using isolated presynaptic terminals prepared from rat cerebral cortex. Methods: Released glutamate was measured fluorometrically in a spectrophotometer as the fluorescence of NADPH and calcium as the fluorescence of fura-2. 4-aminopyridine was used to induce membrane depolarization. Glutamate uptake was measured in a series of different concentrations of L-glutamate corresponding to the high- and the low- affinity uptake systems adding a fixed concentration og radiolabelled glutamate. The labelling was measured by counting disintegrations per min in a ,-scintillation counter. Results: Sevoflurane reduced the calcium-dependent glutamate release in a dose-dependent manner as sevoflurane 1.5, 2.5 and 4.0% reduced the release by 58, 69 and 94%, respectively (P<0.05). Membrane depolarization induced an increase in free cytosolic calcium by 25%. Sevoflurane did not affect this increase. Neither the high- nor the low-affinity uptake transporter systems are affected by the anaesthetic. Conclusion: These results indicate that different volatile anaesthetics may act differently on the presynaptic terminal. The exact modes of action have to be further investigated. [source] Membrane depolarization induces K+ efflux from subapical maize root segmentsNEW PHYTOLOGIST, Issue 1 2002Fabio F. Nocito Summary ,,The role of potassium efflux from maize (Zea mays) root segments in maintaining transmembrane electric potential difference (Em) was studied in vivo, together with the involvement of outward rectifying K+ channels (ORCs). ,,Measurements were made of the efflux of potassium (K+) from roots when its uptake was competitively inhibited by rubidium (Rb+), of the Em of the root cells by microelectrodes and of the unidirectional fluxes of monovalent cations. ,,The influx of Rb+, caesium (Cs+) or ammonium (NH4+) into the segments induced an efflux of K+. Lithium (Li+) and sodium (Na+) were not taken up and did not induce K+ efflux. The permeating cations induced membrane depolarizations, which were closely related to the values of K+ efflux. Two K+ -channel blockers, tetraethylammonium-chloride and quinidine, inhibited K+ efflux. The inhibition was accompanied by a higher membrane depolarization induced by Rb+, whose influx was not affected. ,,The results suggest that a depolarizing event caused by cation uptake increased K+ efflux from the cells, probably through the activation of ORCs involved in restoration and stabilization of Em. [source] Functional role of cyclic nucleotide-gated channels in rat medial vestibular nucleus neuronsTHE JOURNAL OF PHYSIOLOGY, Issue 3 2008Maria Vittoria Podda Although cyclic nucleotide-gated (CNG) channels are expressed in numerous brain areas, little information is available on their functions in CNS neurons. The aim of the present study was to define the distribution of CNG channels in the rat medial vestibular nucleus (MVN) and their possible involvement in regulating MVN neuron (MVNn) excitability. The majority of MVNn expressed both CNG1 and CNG2 A subunits. In whole-cell current-clamp experiments carried out on brainstem slices containing the MVNn, the membrane-permeant analogues of cyclic nucleotides, 8-Br-cGMP and 8-Br-cAMP (1 mm), induced membrane depolarizations (8.9 ± 0.8 and 9.2 ± 1.0 mV, respectively) that were protein kinase independent. The cGMP-induced depolarization was associated with a significant decrease in the membrane input resistance. The effects of cGMP on membrane potential were almost completely abolished by the CNG channel blockers, Cd2+ and l - cis -diltiazem, but they were unaffected by blockade of hyperpolarization-activated cyclic nucleotide-gated channels. In voltage-clamp experiments, 8-Br-cGMP induced non-inactivating inward currents (,22.2 ± 3.9 pA) with an estimated reversal potential near 0 mV, which were markedly inhibited by reduction of extracellular Na+ and Ca2+ concentrations. Membrane depolarization induced by CNG channel activation increased the firing rate of MVNn without changing the action potential shape. Collectively, these findings provide novel evidence that CNG channels affect membrane potential and excitability of MVNn. Such action should have a significant impact on the function of these neurons in sensory,motor integration processes. More generally, it might represent a broad mechanism for regulating the excitability of different CNS neurons. [source] Apoptosis via the B cell antigen receptor requires Bax translocation and involves mitochondrial depolarization, cytochrome C release, and caspase-9 activationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2004Eric Eldering Abstract Various routes to apoptosis can be active during B cell development. In a model system of mature B cells, differences in caspase-3 processing have suggested that antigen receptor (BCR)-mediated apoptosis may involve a zVAD-insensitive initiator protease(s). In search of the events leading to caspase-3 activation, we now establish that both CD95- and BCR-mediated apoptosis depend on Bax activation and cytochrome C (cytC) release. Nevertheless, the timing and caspase-dependence of mitochondrial membrane depolarization differed considerably after CD95- or BCR-triggering. To delineate events subsequent to cytC release, we compared apoptosis induced via BCR triggering and via direct mitochondrial depolarization by CCCP. In both cases, partial processing of caspase-3 was observed in the presence of zVAD. By expression in 293 cells we addressed the potential of candidate initiator caspases to function in the presence of zVAD, and found that caspase-9 efficiently processed caspase-3, while caspase-2 or ,8 were inactive. Finally, retroviral expression of dominant-negative caspase-9 inhibited both CD95- and BCR-mediated apoptosis. In conclusion, we obtained no evidence for involvement of a BCR-specific protease. Instead, our data show for the first time that the BCR-signal causes Bax translocation, followed by mitochondrial depolarization, and cytC release. Subsequent caspase-9 activation can solely account for events further downstream. [source] N -methyl- d -aspartate receptor- and metabotropic glutamate receptor-dependent long-term depression are differentially regulated by the ubiquitin-proteasome systemEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009Ami Citri Abstract Long-term depression (LTD) in CA1 pyramidal neurons can be induced by activation of either N -methyl- d -aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs), both of which elicit changes in synaptic efficacy through ,-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) endocytosis. To address the role of the ubiquitin-proteasome system in regulating AMPAR endocytosis during these forms of LTD, we examined the effects of pharmacological inhibitors of proteasomal degradation and protein ubiquitination on endocytosis of glutamate receptor 1 (GluR1) -containing AMPARs in dissociated rat hippocampal cultures as well as LTD of excitatory synaptic responses in acute rat hippocampal slices. Our findings suggest that the contribution of the ubiquitin-proteasome system to NMDAR-induced vs. mGluR-induced AMPAR endocytosis and the consequent LTD differs significantly. NMDAR-induced AMPAR endocytosis and LTD occur independently of proteasome function but appear to depend, at least in part, on ubiquitination. In contrast, mGluR-induced AMPAR endocytosis and LTD are enhanced by inhibition of proteasomal degradation, as well as by the inhibitor of protein ubiquitination. Furthermore, the decay of mGluR-induced membrane depolarization and Erk activation is delayed following inhibition of either ubiquitination or proteasomal degradation. These results suggest that, although NMDAR-dependent LTD may utilize ubiquitin as a signal for AMPAR endocytosis, mGluR-induced signaling and LTD are limited by a feedback mechanism that involves the ubiquitin-proteasome system. [source] Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial,neuronal culturesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2008Takayuki Nakagawa Abstract Glutamate uptake by the Na+ -dependent glutamate transporter GLT-1, which is predominantly expressed in astrocytes, is crucial for regulating glutamate concentration at the synaptic cleft and achieving proper excitatory neurotransmission. A body of evidence suggests that GLT-1 constitutively traffics between the plasma membrane and endosomes via an endocytosis/recycling pathway, and forms a cluster. Here, we report substrate transport via GLT-1-induced formation of GLT-1 cluster accompanied by intracellular trafficking in rat astroglial,neuronal cultures. We constructed a recombinant adenovirus expressing enhanced green fluorescence protein (EGFP)-tagged GLT-1. Adenoviral infection resulted in the expression of functional GLT-1,EGFP preferentially in astrocytes, partly as clusters. Treatment with glutamate, but not N -methyl-D-aspartate, dramatically increased the number of GLT-1 clusters within 1 h. The estimated EC50 value of glutamate was 240 ,m. In addition, glutamate decreased the cell surface expression and increased the intracellular expression of GLT-1. The GLT-1 clusters were found in early and recycling endosomes and partly in lysosomes, and were inhibited by blockade of endocytotic pathways. Ionotropic and metabotropic glutamate receptor antagonists had no effect on glutamate-induced GLT-1 clustering. The non-transportable glutamate uptake inhibitors (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate and dihydrokainate, as well as Na+ -free conditions, prevented the glutamate-induced GLT-1 clustering, whereas the competitive substrates, aspartate and L- trans -pyrrolidine-2,4-dicarboxylate, induced GLT-1 clustering. Furthermore, the Na+/K+ -ATPase inhibitor, ouabain, and the Na+ ionophores, gramicidin and monensin, produced GLT-1 clustering. Modulators of intracellular Ca2+signaling or membrane depolarization had no effect on GLT-1 clustering. Taken together, these results suggest that Na+ influx associated with GLT-1 substrate transport triggers the formation of GLT-1 clusters accompanied by intracellular trafficking via endocytotic pathways in astrocytes. [source] The nitric oxide/cyclic guanosine monophosphate pathway modulates the inspiratory-related activity of hypoglossal motoneurons in the adult ratEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008Fernando Montero Abstract Motoneurons integrate interneuronal activity into commands for skeletal muscle contraction and relaxation to perform motor actions. Hypoglossal motoneurons (HMNs) are involved in essential motor functions such as breathing, mastication, swallowing and phonation. We have investigated the role of the gaseous molecule nitric oxide (NO) in the regulation of the inspiratory-related activity of HMNs in order to further understand how neural activity is transformed into motor activity. In adult rats, we observed nitrergic fibers and bouton-like structures in close proximity to motoneurons, which normally lack the molecular machinery to synthesize NO. In addition, immunohistochemistry studies demonstrated that perfusion of animals with a NO donor resulted in an increase in the levels of cyclic guanosine monophosphate (cGMP) in motoneurons, which express the soluble guanylyl cyclase (sGC) in the hypoglossal nucleus. Modulators of the NO/cGMP pathway were micro-iontophoretically applied while performing single-unit extracellular recordings in the adult decerebrated rat. Application of a NO synthase inhibitor or a sGC inhibitor induced a statistically significant reduction in the inspiratory-related activity of HMNs. However, excitatory effects were observed by ejection of a NO donor or a cell-permeable analogue of cGMP. In slice preparations, application to the bath of a NO donor evoked membrane depolarization and a decrease in rheobase, which were prevented by co-addition to the bath of a sGC inhibitor. These effects were not prevented by reduction of the spontaneous synaptic activity. We conclude that NO from afferent fibers anterogradely modulates the inspiratory-related activity of HMNs by a cGMP-dependent mechanism in physiological conditions. [source] Persistent rhythmic oscillations induced by nicotine on neonatal rat hypoglossal motoneurons in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2006Nerijus Lamanauskas Abstract Patch-clamp recording from hypoglossal motoneurons in neonatal Wistar rat brainstem slices was used to investigate the electrophysiological effects of bath-applied nicotine (10 µm). While nicotine consistently evoked membrane depolarization (or inward current under voltage clamp), it also induced electrical oscillations (3,13 Hz; lasting for , 8.5 min) on 40% of motoneurons. Oscillations required activation of nicotinic receptors sensitive to dihydro-,-erythroidine (0.5 µm) or methyllycaconitine (5 nm), and were accompanied by enhanced frequency of spontaneous glutamatergic events. The slight voltage dependence of oscillations and their block by the gap junction blocker, carbenoxolone, suggest they originate from electrically coupled neurons. Network nicotinic receptors desensitized more slowly than motoneuron ones, demonstrating that network receptors remained active longer to support heightened release of the endogenous glutamate necessary for enhancing the network excitability. The ionotropic glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and the group I metabotropic receptor antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), suppressed oscillations, while the NMDA receptor antagonist, d -amino-phosphonovaleriate (APV), produced minimal depression. Nicotine-evoked oscillations constrained spike firing at low rates, although motoneurons could still generate high-frequency trains of action potentials with unchanged gain for input depolarization. This is the first demonstration that persistent activation of nicotinic receptors could cause release of endogenous glutamate to evoke sustained oscillations in the theta frequency range. As this phenomenon likely represented a powerful process to coordinate motor output to tongue muscles, our results outline neuronal nicotinic acetylcholine receptors (nAChRs) as a novel target for pharmacological enhancement of motoneuron output in motor dysfunction. [source] Glutamate-induced elevations in intracellular chloride concentration in hippocampal cell cultures derived from EYFP-expressing miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004Jennifer E. Slemmer Abstract The homeostasis of intracellular Cl, concentration ([Cl,]i) is critical for neuronal function, including ,-aminobutyric acid (GABA)ergic synaptic transmission. Here, we investigated activity-dependent changes in [Cl,]i using a transgenetically expressed Cl, -sensitive enhanced yellow-fluorescent protein (EYFP) in cultures of mouse hippocampal neurons. Application of glutamate (100 µm for 3 min) in a bath perfusion to cell cultures of various days in vitro (DIV) revealed a decrease in EYFP fluorescence. The EYFP signal increased in amplitude with increasing DIV, reaching a maximal response after 7 DIV. Glutamate application resulted in a slight neuronal acidification. Although EYFP fluorescence is sensitive to pH, EYFP signals were virtually abolished in Cl, -free solution, demonstrating that the EYFP signal represented an increase in [Cl,]i. Similar to glutamate, a rise in [Cl,]i was also induced by specific ionotropic glutamate receptor agonists and by increasing extracellular [K+], indicating that an increase in driving force for Cl, suffices to increase [Cl,]i. To elucidate the membrane mechanisms mediating the Cl, influx, a series of blockers of ion channels and transporters were tested. The glutamate-induced increase in [Cl,]i was resistant to furosemide, bumetanide and 4,4,-diisothiocyanato-stilbene-2,2,-disulphonic acid (DIDS), was reduced by bicuculline to about 80% of control responses, and was antagonized by niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). We conclude that membrane depolarization increases [Cl,]i via several pathways involving NFA- and NPPB-sensitive anion channels and GABAA receptors, but not through furosemide-, bumetanide- or DIDS-sensitive Cl, transporters. The present study highlights the vulnerability of [Cl,]i homeostasis after membrane depolarization in neurons. [source] Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002Sangmi Chung Abstract Nurr1 is a transcription factor critical for the development of midbrain dopaminergic (DA) neurons. This study modified mouse embryonic stem (ES) cells to constitutively express Nurr1 under the elongation factor-1, promoter. The Nurr1-expression in ES cells lead to up-regulation of all DA neuronal markers tested, resulting in about a 4- to 5-fold increase in the proportion of DA neurons. In contrast, other neuronal and glial markers were not significantly changed by Nurr1 expression. It was also observed that there was an additional 4-fold increase in the number of DA neurons in Nurr1-expressing clones following treatment with Shh, FGF8 and ascorbic acid. Several lines of evidence suggest that these neurons may represent midbrain DA neuronal phenotypes; firstly, they coexpress midbrain DA markers such as aromatic l -amino acid decarboxylase, calretinin, and dopamine transporter, in addition to tyrosine hydroxylase and secondly, they do not coexpress other neurotransmitters such as GABA or serotonin. Finally, consistent with an increased number of DA neurons, the Nurr1 transduction enhanced the ability of these neurons to produce and release DA in response to membrane depolarization. This study demonstrates an efficient genetic manipulation of ES cells that facilitates differentiation to midbrain DA neurons, and it will serve as a framework of genetic engineering of ES cells by key transcription factor to regulate their cell fate. [source] Phosphorylation of voltage-gated ion channels in rat olfactory receptor neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2001Christian H. Wetzel Abstract In olfactory receptor neurons (ORNs), ligand,odorant receptor interactions cause G protein-mediated activation of adenylate cyclase and a subsequent increase in concentration of the intracellular messenger cAMP. Odorant-evoked elevation in cAMP is thought to directly activate a cation-selective cyclic nucleotide-gated channel, which causes external Ca2+ influx, leading to membrane depolarization and the generation of action potentials. Our data show that in freshly dissociated rat ORNs, odorant-induced elevation in cAMP also activates cAMP-dependent protein kinase (PKA), which is then able to phosphorylate various protein targets in the olfactory signal transduction pathway, specifically voltage-gated sodium and calcium channels. The presence of PKI (PKA inhibitor peptide) blocked the modulatory action of cAMP on voltage-gated ion channels. By modulating the input/output properties of the sensory neurons, this mechanism could take part in the complex adaptation process in odorant perception. In addition, we found modulation of voltage-gated sodium and calcium channel currents by 5-hydroxytryptamine and the dopamine D1 receptor agonist SKF 38393. These findings suggest that in situ ORNs might also be a target for efferent modulation. [source] Involvement of Calmodulin in Glucagon-Like Peptide 1(7-36) Amide-Induced Inhibition of the ATP-Sensitive K+ Channel in Mouse Pancreatic ,-CellsEXPERIMENTAL PHYSIOLOGY, Issue 3 2001W. G. Ding The present investigation was designed to examine whether calmodulin is involved in the inhibition of the ATP-sensitive K+ (KATP) channel by glucagon-like peptide 1(7-36) amide (GLP-1) in mouse pancreatic ,-cells. Membrane potential, single channel and whole-cell currents through the KATP channels, and intracellular free Ca2+ concentration ([Ca2+]i) were measured in single mouse pancreatic ,-cells. Whole-cell patch-clamp experiments with amphotericin-perforated patches revealed that membrane conductance at around the resting potential is predominantly supplied by the KATP channels in mouse pancreatic ,-cells. The addition of 20 nM GLP-1 in the presence of 5 mM glucose significantly reduced the membrane KATP conductance, accompanied by membrane depolarization and the generation of electrical activity. A calmodulin inhibitor N -(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7, 20 ,M) completely reversed the inhibitory actions of GLP-1 on the membrane KATP conductance and resultant membrane depolarization. Cell-attached patch recordings confirmed the inhibition of the KATP channel activity by 20 nM GLP-1 and its restoration by 20 ,M W-7 or 10 ,M calmidazolium at the single channel level. Bath application of 20 ,M W-7 also consistently abolished the GLP-1-evoked increase in [Ca2+]i in the presence of 5 mM glucose. These results strongly suggest that the mechanisms by which GLP-1 inhibits the KATP channel activity accompanied by the initiation of electrical activity in mouse pancreatic ,-cells include a calmodulin-dependent mechanism in addition to the well-documented activation of the cyclic AMP-protein kinase A system. [source] Inhibition of human ether à go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N- and C-terminiFEBS JOURNAL, Issue 5 2006Ulrike Ziechner Human ether à go-go potassium channels (hEAG1) open in response to membrane depolarization and they are inhibited by Ca2+/calmodulin (CaM), presumably binding to the C-terminal domain of the channel subunits. Deletion of the cytosolic N-terminal domain resulted in complete abolition of Ca2+/CaM sensitivity suggesting the existence of further CaM binding sites. A peptide array-based screen of the entire cytosolic protein of hEAG1 identified three putative CaM-binding domains, two in the C-terminus (BD-C1: 674,683, BD-C2: 711,721) and one in the N-terminus (BD-N: 151,165). Binding of GST-fusion proteins to Ca2+/CaM was assayed with fluorescence correlation spectroscopy, surface plasmon resonance spectroscopy and precipitation assays. In the presence of Ca2+, BD-N and BD-C2 provided dissociation constants in the nanomolar range, BD-C1 bound with lower affinity. Mutations in the binding domains reduced inhibition of the functional channels by Ca2+/CaM. Employment of CaM-EF-hand mutants showed that CaM binding to the N- and C-terminus are primarily dependent on EF-hand motifs 3 and 4. Hence, closure of EAG channels presumably requires the binding of multiple CaM molecules in a manner more complex than previously assumed. [source] Enzymatic oxidation products of spermine induce greater cytotoxic effects on human multidrug-resistant colon carcinoma cells (LoVo) than on their wild-type counterpartsINTERNATIONAL JOURNAL OF CANCER, Issue 1 2002Annarica Calcabrini Abstract The occurrence of resistance to cytotoxic agents in tumor cells, associated with several phenotypic alterations, is one of the major obstacles to successful anticancer chemotherapy. A new strategy to overcome MDR of human cancer cells was studied, using BSAO, which generates cytotoxic products from spermine, H2O2 and aldehyde(s). The involvement of these products in causing cytotoxicity was investigated in both drug-sensitive (LoVo WT) and drug-resistant (LoVo DX) colon adenocarcinoma cells. Evaluation of clonogenic cell survival showed that LoVo DX cells are more sensitive than LoVo WT cells. Fluorometric assay and treatments performed in the presence of catalase demonstrated that the cytotoxicity was due mainly to the presence of H2O2. Cytotoxicity was eliminated in the presence of both catalase and ALDH. Transmission electron microscopic observations showed more pronounced mitochondrial modifications in drug-resistant than in drug-sensitive cells. Mitochondrial functionality studies performed by flow cytometry after JC-1 labeling revealed basal hyperpolarization of the mitochondrial membrane in LoVo DX cells. After treatment with BSAO and spermine, earlier and higher mitochondrial membrane depolarization was found in LoVo DX cells than in drug-sensitive cells. In addition, higher basal ROS production in LoVo DX cells than in drug-sensitive cells was detected by flow-cytometric analysis, suggesting increased mitochondrial activity in drug-resistant cells. Our results support the hypothesis that mitochondrial functionality affects the sensitivity of cells to the cytotoxic enzymatic oxidation products of spermine, which might be promising anticancer agents, mainly against drug-resistant tumor cells. © 2002 Wiley-Liss, Inc. [source] Blockade of HERG K+ channel by an antihistamine drug brompheniramine requires the channel binding within the S6 residue Y652 and F656JOURNAL OF APPLIED TOXICOLOGY, Issue 2 2008Sang-Joon Park Abstract A number of clinically used drugs block delayed rectifier K+ channels and prolong the duration of cardiac action potentials associated with long QT syndrome. This study investigated the molecular mechanisms of voltage-dependent inhibition of human ether- a-go-go -related gene (HERG) delayed rectifier K+ channels expressed in HEK-293 cells by brompheniramine, an antihistamine. Brompheniramine inhibited HERG current in a concentration-dependent manner with the half-maximal inhibitory concentration (IC50) value of 1.7 µm at 0 mV. A block of HERG current by brompheniramine was enhanced by progressive membrane depolarization and showed significantly negative shift in voltage-dependence of channel activation. Inhibition of HERG current by brompheniramine showed time-dependence. The S6 residue HERG mutant Y652A and F656C largely reduced the blocking potency of HERG current. These results indicate that brompheniramine mainly inhibited the HERG potassium channel through the residue Y652 and F656 and these residues may be an obligatory determinant in inhibition of HERG current for brompheniramine. Copyright © 2007 John Wiley & Sons, Ltd. [source] Electrophysiological Basis and Genetics of Brugada SyndromeJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 2005AUGUSTUS O. GRANT M.B.Ch.B., Ph.D. Brugada syndrome is a primary arrhythmic syndrome arising in the structurally normal heart. Any proposed mechanism should account for the major features of the syndrome: localization of the ST segment and T-wave changes to the right precordial leads, association of conduction slowing at several levels, precipitation or aggravation of the major ECG changes by sodium channel-blocking drugs and the occurrence of ventricular fibrillation. Heterogeneity of repolarization across the ventricle wall plays a major role. Any agency that shifts the net current gradient during phase I outward would exaggerate the normal heterogeneity of repolarization and result in the ST segment and T-wave changes characteristic of the syndrome. When the outward current shift is marked, premature repolarization may occur in epicardial zone and the resulting gradient may precipitate reentry. The syndrome is inherited as an autosomal dominant. However, 75% of clinically affected individuals are males. In 20% of cases, the syndrome is associated with mutations of the cardiac sodium channel gene SCN5A. The mutations result in a loss-of-function as a result of the synthesis of a non-functional protein, altered protein trafficking, or change in gating. Agencies that reduce the sodium current may precipitate the characteristic ECG changes, for example, sodium channel blockers and membrane depolarization by hyperkalemia. Sympathetic stimulation may reverse the ECG changes and reduce arrhythmia recurrence. By its nonspecific potassium channel blocking action, quinidine may also reduce arrhythmia recurrence. We still do not know the basis for defect in the majority of patients with Brugada syndrome. [source] Modulation of cardiac ionic homeostasis by 3-iodothyronamineJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009Sandra Ghelardoni Abstract 3-iodothyronamine (T1AM) is a novel endogenous relative of thyroid hormone, able to interact with trace amine-associated receptors, a class of plasma membrane G protein-coupled receptors, and to produce a negative inotropic and chronotropic effect. In the isolated rat heart 20,25 ,M T1AM decreased cardiac contractility, but oxygen consumption and glucose uptake were either unchanged or disproportionately high when compared to mechanical work. In adult rat cardiomyocytes acute exposure to 20 ,M T1AM decreased the amplitude and duration of the calcium transient. In patch clamped cardiomyocytes sarcolemmal calcium current density was unchanged while current facilitation by membrane depolarization was abolished consistent with reduced sarcoplasmic reticulum (SR) calcium release. In addition, T1AM decreased transient outward current (Ito) and IK1 background current. SR studies involving 20 ,M T1AM revealed a significant decrease in ryanodine binding due to reduced Bmax, no significant change in the rate constant of calcium-induced calcium release, a significant increase in calcium leak measured under conditions promoting channel closure, and no effect on oxalate-supported calcium uptake. Based on these observations we conclude T1AM affects calcium and potassium homeostasis and suggest its negative inotropic action is due to a diminished pool of SR calcium as a result of increased diastolic leak through the ryanodine receptor, while increased action potential duration is accounted for by inhibition of Ito and IK1 currents. [source] Calcium channel blockers inhibit galvanotaxis in human keratinocytesJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2002Donna R. Trollinger Directed migration of keratinocytes is essential for wound healing. The migration of human keratinocytes in vitro is strongly influenced by the presence of a physiological electric field and these cells migrate towards the negative pole of such a field (galvanotaxis). We have previously shown that the depletion of extracellular calcium blocks the directional migration of cultured human keratinocytes in an electric field (Fang et al., 1998; J Invest Dermatol 111:751,756). Here we further investigate the role of calcium influx on the directionality and migration speed of keratinocytes during electric field exposure with the use of Ca2+ channel blockers. A constant, physiological electric field strength of 100 mV/mm was imposed on the cultured cells for 1 h. To determine the role of calcium influx during galvanotaxis we tested the effects of the voltage-dependent cation channel blockers, verapamil and amiloride, as well as the inorganic Ca2+ channel blockers, Ni2+ and Gd3+ and the Ca2+ substitute, Sr2+, on the speed and directionality of keratinocyte migration during galvanotaxis. Neither amiloride (10 ,M) nor verapamil (10 ,M) had any effect on the galvanotaxis response. Therefore, calcium influx through amiloride-sensitive channels is not required for galvanotaxis, and membrane depolarization via K+ channel activity is also not required. In contrast, Sr2+ (5 mM), Ni2+ (1,5 mM), and Gd3+ (100 ,M) all significantly inhibit the directional migratory response to some degree. While Sr2+ strongly inhibits directed migration, the cells exhibit nearly normal migration speeds. These findings suggest that calcium influx through Ca2+ channels is required for directed migration of keratinocytes during galvanotaxis and that directional migration and migration speed are probably controlled by separate mechanisms. J. Cell. Physiol. 193: 1,9, 2002. © 2002 Wiley-Liss, Inc. [source] Light induces Fos expression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cellsJOURNAL OF NEUROCHEMISTRY, Issue 3 2010Marie-Louise Moldrup J. Neurochem. (2010) 112, 797,806. Abstract The photopigment melanopsin is expressed in a subtype of mammalian ganglion cells in the retina that project to the circadian clock in the hypothalamic suprachiasmatic nucleus to mediate non-visual light information. Melanopsin renders these retinal ganglion cells intrinsically photosensitive and the cells respond to light by a membrane depolarization and induction of the immediate early response gene Fos. Previous studies showed that the light activated melanopsin-induced signaling, the phototransduction, leading to depolarization of the membrane resembles the invertebrate opsins, which involves a G,q/11 coupled phospholipase C activation. However, the signaling proteins mediating melanopsin-induced Fos expression are unresolved. In this study, we examined the phototransduction leading to Fos expression in melanopsin-transfected PC12 cells. A pivotal role of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) was found as pharmacological blockage of this kinase suppressed the light-induced Fos expression. Illumination increased the inositol phosphate turnover and induced phosphorylation of ERK1/2 and p38 but not the c-Jun N-terminal kinase. The G,q/11 protein inhibitor YM254890 attenuated these intracellular light responses. Our data strongly indicate that G,q/11 -mediated ERK1/2 activation is essential for expression of Fos upon illumination of melanopsin-expressing PC12 cells. [source] Mechanism of the persistent sodium current activator veratridine-evoked Ca2+ elevation: implication for epilepsyJOURNAL OF NEUROCHEMISTRY, Issue 3 2009Ádám Fekete Abstract Although the role of Na+ in several aspects of Ca2+ regulation has already been shown, the exact mechanism of intracellular Ca2+ concentration ([Ca2+]i) increase resulting from an enhancement in the persistent, non-inactivating Na+ current (INa,P), a decisive factor in certain forms of epilepsy, has yet to be resolved. Persistent Na+ current, evoked by veratridine, induced bursts of action potentials and sustained membrane depolarization with monophasic intracellular Na+ concentration ([Na+]i) and biphasic [Ca2+]i increase in CA1 pyramidal cells in acute hippocampal slices. The Ca2+ response was tetrodotoxin- and extracellular Ca2+ -dependent and ionotropic glutamate receptor-independent. The first phase of [Ca2+]i rise was the net result of Ca2+ influx through voltage-gated Ca2+ channels and mitochondrial Ca2+ sequestration. The robust second phase in addition involved reverse operation of the Na+,Ca2+ exchanger and mitochondrial Ca2+ release. We excluded contribution of the endoplasmic reticulum. These results demonstrate a complex interaction between persistent, non-inactivating Na+ current and [Ca2+]i regulation in CA1 pyramidal cells. The described cellular mechanisms are most likely part of the pathomechanism of certain forms of epilepsy that are associated with INa,P. Describing the magnitude, temporal pattern and sources of Ca2+ increase induced by INa,P may provide novel targets for antiepileptic drug therapy. [source] Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiationJOURNAL OF NEUROCHEMISTRY, Issue 3 2008Michelle L. Olsen Abstract Astrocytes and oligodendrocytes are characterized by a very negative resting potential and a high resting permeability for K+ ions. Early pharmacological and biophysical studies suggested that the resting potential is established by the activity of inwardly rectifying, Ba2+ sensitive, weakly rectifying Kir channels. Molecular cloning has identified 16 Kir channels genes of which several mRNA transcripts and protein products have been identified in glial cells. However, genetic deletion and siRNA knock-down studies suggest that the resting conductance of astrocytes and oligodendrocytes is largely due to Kir4.1. Loss of Kir4.1 causes membrane depolarization, and a break-down of K+ and glutamate homeostasis which results in seizures and wide-spread white matter pathology. Kir channels have also been shown to act as critical regulators of cell division whereby Kir function is correlated with an exit from the cell cycle. Conversely, loss of functional Kir channels is associated with re-entry of cells into the cell cycle and gliosis. A loss of functional Kir channels has been shown in a number of neurological diseases including temporal lobe epilepsy, amyotrophic lateral sclerosis, retinal degeneration and malignant gliomas. In the latter, expression of Kir4.1 is sufficient to arrest the aberrant growth of these glial derived tumor cells. Kir4.1 therefore represents a potential therapeutic target in a wide variety of neurological conditions. [source] Depolarization recruits DCC to the plasma membrane of embryonic cortical neurons and enhances axon extension in response to netrin-1JOURNAL OF NEUROCHEMISTRY, Issue 2 2008Jean-François Bouchard Abstract The netrin-1 receptor Deleted in Colorectal Cancer (DCC) is required for the formation of major axonal projections by embryonic cortical neurons, including the corpus callosum, hippocampal commissure, and cortico-thalamic tracts. The presentation of DCC by axonal growth cones is tightly regulated, but the mechanisms regulating DCC trafficking within neurons are not well understood. Here, we investigated the mechanisms regulating DCC recruitment to the plasma membrane of embryonic cortical neurons. In embryonic spinal commissural neurons, protein kinase A (PKA) activation recruits DCC to the plasma membrane and enhances axon chemoattraction to netrin-1. We demonstrate that PKA activation similarly recruits DCC and increases embryonic cortical neuron axon extension, which, like spinal commissural neurons, respond to netrin-1 as a chemoattractant. We then determined if depolarization might recruit DCC to the plasma membrane. Neither netrin-1 induced axon extension, nor levels of plasma membrane DCC, were altered by depolarizing embryonic spinal commissural neurons with elevated levels of KCl. In contrast, depolarizing embryonic cortical neurons increased the amount of plasma membrane DCC, including at the growth cone, and increased axon outgrowth evoked by netrin-1. Inhibition of PKA, phosphatidylinositol-3-kinase, protein kinase C, or exocytosis blocked the depolarization-induced recruitment of DCC and suppressed axon outgrowth. Inhibiting protein synthesis did not affect DCC recruitment, nor were the distributions of trkB or neural cell adhesion molecule (NCAM) influenced by depolarization, consistent with selective mobilization of DCC. These findings identify a role for membrane depolarization modulating the response of axons to netrin-1 by regulating DCC recruitment to the plasma membrane. [source] The Salt-Inducible Kinase, SIK, Is Induced by Depolarization in BrainJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Jonathan D. Feldman Abstract: Membrane depolarization of neurons is thought to lead to changes in gene expression that modulate neuronal plasticity. We used representational difference analysis to identify a group of cDNAs that are induced by membrane depolarization or by forskolin, but not by neurotrophins or growth factors, in PC12 pheochromocytoma cells. One of these genes, SIK (salt- inducible kinase), is a member of the sucrose-nonfermenting 1 protein kinase/AMP-activated protein kinase protein kinase family that was also recently identified from the adrenal gland of rats treated with high-salt diets. SIK mRNA is induced up to eightfold in specific regions of the hippocampus and cortex in rats, following systemic kainic acid administration and seizure induction. [source] Activity-dependent somatostatin gene expression is regulated by cAMP-dependent protein kinase and Ca2+ -calmodulin kinase pathwaysJOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2010Isabel Sánchez-Muñoz Abstract Ca2+ influx through L-type voltage-gated Ca2+ channels (L-VSCC) is required for K+ -induced somatostatin (SS) mRNA. Increase in intracellular Ca2+ concentration leads to the activation of cyclic AMP-responsive element binding protein (CREB), a key regulator of SS gene transcription. Several different protein kinases possess the capability of driving CREB upon membrane depolarization. We investigated which of the signalling pathways involved in CREB activation mediates SS gene induction in response to membrane depolarization in cerebrocortical cells exposed to 56 mM K+. Activity dependent phosphorylation of CREB in Ser133 was immunodetected. Activation of CREB was biphasic showing two peaks at 5 and 60 min. The selective inhibitors of extracellular signal related protein kinase/mitogen-activated protein kinase (ERK/MAPK) PD098059, cyclic-AMPdependent protein kinase (cAMP/PKA) H89 and RpcAMPS, and Ca2+/calmodulin-dependent protein kinases (CaMKs) pathways KN62 and KN93 were used to determine the signalling pathways involved in CREB activation. Here we show that the early activation of CREB was dependent on cAMP/PKA along with CaMKs pathways whereas the ERK/MAPK and CaMKs were implicated in the second peak. We observed that H89, RpcAMPS, KN62 and KN93 blocked K+ -induced SS mRNA whereas PD098059 did not. These findings indicate that K+ -induced SSmRNA is mediated by the activation of cAMP/PKA and CaMKs pathways, thus suggesting that the early activation of CREB is involved in the induction of SS by neuronal activity. We also demonstrated, using transient transfections of cerebrocortical cells, that K+ induces the transcriptional regulation of the SS gene through the cAMP-responsive element (CRE) sequence located in the SS promoter. © 2009 Wiley-Liss, Inc. [source] N-methyl-D-aspartate-stimulated ERK1/2 signaling and the transcriptional up-regulation of plasticity-related genes are developmentally regulated following in vitro neuronal maturationJOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2009Xianju Zhou Abstract The general features of neuroplasticity are developmentally regulated. Although it has been hypothesized that the loss of plasticity in mature neurons may be due to synaptic saturation and functional reduction of N-methyl-D-aspartate receptors (NMDAR), the molecular mechanisms remain largely unknown. We examined the effects of NMDAR activation and KCl-mediated membrane depolarization on ERK1/2 signaling following in vitro maturation of cultured cortical neurons. Although NMDA stimulated a robust increase in intracellular calcium at both DIV (day in vitro) 3 and 14, the activation of ERK1/2 and cAMP responsive element-binding protein (CREB) was impaired at DIV 14. Specifically, the phosphorylation of ERK1/2 was stimulated by both NMDA and KCl at DIV 3. However, at DIV 14, NMDA- but not KCl-stimulated ERK1/2 and CREB phosphorylation was significantly diminished. Consistently, the NMDA-induced transcription of ERK/CREB-regulated genes Bdnf exon 4, Arc, and zif268 was significantly attenuated at DIV 14. Moreover, in comparison with 3 DIV neurons, the phosphorylated-ERK1/2 in 14 DIV neurons displayed a tremendous increase following maturation and was more susceptible to dephosphorylation. Blocking calcium channels by nifedipine or NMDAR by APV caused a more dramatic ERK dephosphorylation in 14 DIV neurons. We further demonstrate that the loss of plasticity-related signaling is unrelated to NMDA-induced cell death of the 14 DIV neurons. Taken together, these results suggest that the attenuation of certain aspects of neuroplasticity following maturation may be due to the reduction of NMDAR-mediated gene transcription and a saturation of ERK1/2 activity. © 2009 Wiley-Liss, Inc. [source] Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxinJOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2006Carmen Vale Abstract A channel open on the membrane can be formed by palytoxin (PTX). Ten nanomolar PTX caused an irreversible increase in the cytosolic calcium concentration ([Ca2+]c), which was abolished in the absence of external calcium. The increase was eliminated by saxitoxin (STX) and nifedipine (NIF). Calcium rise is secondary to the membrane depolarization. PTX effect on calcium was dependent on extracellular Na+. Li+ decreased the PTX-evoked rise in [Ca2+]c; replacement of Na+ by N-methyl-D-glucamine (NMDG) abolished PTX-induced calcium increase. [Ca2+]c increase by PTX was strongly reduced after inhibition of the reverse operation of the Na+/Ca2+ exchanger, in the presence of antagonists of excitatory amino acid (EAA) receptors, and by inhibition of neurotransmitter release. PTX did not modify calcium extrusion by the plasma membrane Ca2+ -ATPase (PMCA), because blockade of the calcium pump increased rather than decreased the PTX-induced calcium influx. Extracellular levels of glutamate and aspartate were measured by HPLC and exocytotic neurotransmitter release by determination of synaptic vesicle exocytosis using total internal reflection fluorescence microscopy (TIRFM). PTX caused a concentration-dependent increase in EAA release to the culture medium. Ten nanomolar PTX decreased cell viability by 30% within 5 min. PTX-induced calcium influx involves three pathways: Na+ -dependent activation of voltage-dependent sodium channels (VDSC) and voltage-dependent calcium channels (VDCC), reverse operation of the Na+/Ca2+ exchanger, and indirect activation of EAA receptors through glutamate release. The neuronal injury produced by the toxin could be partially mediated by the PTX-induced overactivation of EAA receptors, VDSC, VDCC and the glutamate efflux into the extracellular space. © 2006 Wiley-Liss, Inc. [source] KATP Channels Are an Important Component of the Shear-Sensing Mechanism in the Pulmonary MicrovasculatureMICROCIRCULATION, Issue 8 2006S. CHATTERJEE ABSTRACT Objective: To investigate the role of a KATP channel in sensing shear, specifically its cessation, in the endothelial cells of the pulmonary microvasculature. Methods: Endothelial cells isolated from the pulmonary microvasculature of wild-type and KATP channel knockout (KIR6.2,/,) mice were either statically cultured (non-flow-adapted) or kept under flow (flow-adapted) and the KIR currents in these cells were monitored by whole-cell patch-clamp technique during flow and its cessation. Membrane potential changes, generation of reactive oxygen species (ROS), and Ca2+ influx with flow cessation were evaluated by the use of fluorescent dyes. Lungs isolated from wild-type mice were imaged to visualize ROS generation in the subpleural endothelium. Results: By patch-clamp analysis, reduction in the KIR current with cessation of flow occurred only in wild-type cells that were flow-adapted and not in flow-adapted KIR6.2,/, cells. Similar observations were made using changes in bisoxonol fluorescence as an index of cell membrane potential. Generation of ROS and Ca2+ influx that follow membrane depolarization were significantly lower in statically cultured and in KIR6.2,/, cells as compared to flow-adapted wild-type cells. Imaging of subpleural endothelial cells of the whole lung showed that the KATP antagonist glyburide caused the production of ROS in the absence of flow cessation. Conclusions: The responses to stop of flow (viz. membrane depolarization, KIR currents, ROS, Ca2+) were significantly altered with knockout of KATP channels, which indicates that this channel is an important component of the pulmonary endothelial response to abrupt loss of shear stress. [source] The effect of sevoflurane on glutamate release and uptake in rat cerebrocortical presynaptic terminalsACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 1 2002M. L. Vinje Background: Volatile anaesthetics exert their effect in the brain mainly by reducing synaptic excitability. Isoflurane abates excitation by reducing the release and increasing the uptake of transmitter glutamate into the presynaptic terminal. The exact molecular mechanisms exerting these effects, however, are not clear. Voltage-gated calcium channels have been proposed as the pharmacological target. The present study examines the effect of sevoflurane on synaptic glutamate release and free cytosolic calcium and the effect on high- and low-affinity uptake of L-glutamate using isolated presynaptic terminals prepared from rat cerebral cortex. Methods: Released glutamate was measured fluorometrically in a spectrophotometer as the fluorescence of NADPH and calcium as the fluorescence of fura-2. 4-aminopyridine was used to induce membrane depolarization. Glutamate uptake was measured in a series of different concentrations of L-glutamate corresponding to the high- and the low- affinity uptake systems adding a fixed concentration og radiolabelled glutamate. The labelling was measured by counting disintegrations per min in a ,-scintillation counter. Results: Sevoflurane reduced the calcium-dependent glutamate release in a dose-dependent manner as sevoflurane 1.5, 2.5 and 4.0% reduced the release by 58, 69 and 94%, respectively (P<0.05). Membrane depolarization induced an increase in free cytosolic calcium by 25%. Sevoflurane did not affect this increase. Neither the high- nor the low-affinity uptake transporter systems are affected by the anaesthetic. Conclusion: These results indicate that different volatile anaesthetics may act differently on the presynaptic terminal. The exact modes of action have to be further investigated. [source] Membrane depolarization induces K+ efflux from subapical maize root segmentsNEW PHYTOLOGIST, Issue 1 2002Fabio F. Nocito Summary ,,The role of potassium efflux from maize (Zea mays) root segments in maintaining transmembrane electric potential difference (Em) was studied in vivo, together with the involvement of outward rectifying K+ channels (ORCs). ,,Measurements were made of the efflux of potassium (K+) from roots when its uptake was competitively inhibited by rubidium (Rb+), of the Em of the root cells by microelectrodes and of the unidirectional fluxes of monovalent cations. ,,The influx of Rb+, caesium (Cs+) or ammonium (NH4+) into the segments induced an efflux of K+. Lithium (Li+) and sodium (Na+) were not taken up and did not induce K+ efflux. The permeating cations induced membrane depolarizations, which were closely related to the values of K+ efflux. Two K+ -channel blockers, tetraethylammonium-chloride and quinidine, inhibited K+ efflux. The inhibition was accompanied by a higher membrane depolarization induced by Rb+, whose influx was not affected. ,,The results suggest that a depolarizing event caused by cation uptake increased K+ efflux from the cells, probably through the activation of ORCs involved in restoration and stabilization of Em. [source] |