Melatonin Synthesis (melatonin + synthesis)

Distribution by Scientific Domains


Selected Abstracts


Chick Pineal Melatonin Synthesis

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
Cyclic AMP Control Abundance of Serotonin N -Acetyltransferase Protein, Light
Abstract: Melatonin production in the pineal gland is high at night and low during the day. This rhythm reflects circadian changes in the activity of serotonin N -acetyltransferase [arylalkylamine N -acetyltransferase (AA-NAT); EC 2.3.1.87], the penultimate enzyme in melatonin synthesis. The rhythm is generated by an endogenous circadian clock. In the chick, a clock is located in the pinealocyte, which also contains two phototransduction systems. One controls melatonin production by adjusting the clock and the other acts distal to the clock, via cyclic AMP mechanisms, to switch melatonin synthesis on and off. Unlike the clock in these cells, cyclic AMP does not appear to regulate activity by altering AA-NAT mRNA levels. The major changes in AA-NAT mRNA levels induced by the clock seemed likely (but not certain) to generate comparable changes in AA-NAT protein levels and AA-NAT activity. Cyclic AMP might also regulate AA-NAT activity via changes in protein levels, or it might act via other mechanisms, including posttranslational changes affecting activity. We measured AA-NAT protein levels and enzyme activity in cultured chick pineal cells and found that they correlated well under all conditions. They rose and fell spontaneously with a circadian rhythm. They also rose in response to agents that increase cyclic AMP. They were raised by agents that increase cyclic AMP, such as forskolin, and lowered by agents that decrease cyclic AMP, such as light and norepinephrine. Thus, both the clock and cyclic AMP can control AA-NAT activity by altering the total amount of AA-NAT protein. Effects of proteosomal proteolysis inhibitors suggest that changes in AA-NAT protein levels, in turn, reflect changes in the rate at which the protein is destroyed by proteosomal proteolysis. It is likely that cyclic AMP-induced changes in AA-NAT protein levels mediate rapid changes in chick pineal AA-NAT activity. Our results indicate that light can rapidly regulate the abundance of a specific protein (AA-NAT) within a photoreceptive cell. [source]


Activation of Arylalkylamine N -Acetyltransferase by Phorbol Esters in Bovine Pinealocytes Suggests a Novel Regulatory Pathway in Melatonin Synthesis

JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2004
C. Schomerus
Abstract In all mammalian species investigated, noradrenaline activates a ,-adrenoceptor/cAMP/protein kinase A-dependent mechanism to switch on arylalkylamine N -acetyltransferase and melatonin biosynthesis in the pineal gland. Other compounds which are known to influence the melatonin-generating system are phorbol esters. The effect of phorbol esters on regulation of melatonin synthesis has been mainly investigated in rat pinealocytes. In these cells, phorbol esters do not increase cAMP levels and arylalkylamine N -acetyltransferase on their own; however, phorbol esters potentiate the effects on cAMP and AANAT activity induced upon ,-adrenoceptor stimulation. In the present study, we investigated the effect of phorbol esters on the regulation of melatonin synthesis in bovine pinealocytes. We show that, in these cells, the phorbol esters 4,-phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate have a direct stimulatory effect and induced 4,10-fold increases in AANAT protein levels, AANAT activity and melatonin production. The extent of these effects was similar to those induced by noradrenaline. Notably, responses to PMA were not accompanied by increases in cAMP levels. Northern blot analysis showed that Aanat mRNA levels did not change upon PMA treatment indicating that phorbol esters control AANAT at a post-transcriptional level. The effects on AANAT and melatonin production were reduced by use of protein kinase C inhibitors, but not by blockade of the cyclic AMP/protein kinase A pathway. Our results point towards a novel mechanism in the regulation of melatonin production that is cAMP-independent and involves protein kinase C. The study is of particular interest because regulation of melatonin biosynthesis in bovines may resemble that in primates more closely than that in rodents. [source]


Single-nucleotide polymorphisms and mRNA expression for melatonin synthesis rate-limiting enzyme in recurrent depressive disorder

JOURNAL OF PINEAL RESEARCH, Issue 4 2010
Piotr Ga, ecki
Abstract:, Depressive disorder (DD) is characterised by disturbances in blood melatonin concentration. It is well known that melatonin is involved in the control of circadian rhythms, sleep included. The use of melatonin and its analogues has been found to be effective in depression therapy. Melatonin synthesis is a multistage process, where the last stage is catalysed by acetylserotonin methyltransferase (ASMT), the reported rate-limiting melatonin synthesis enzyme. Taking into account the significance of genetic factors in depression development, the gene for ASMT may become an interesting focus for studies in patients with recurrent DD. The goal of the study was to evaluate two single-nucleotide polymorphisms (SNPs) (rs4446909; rs5989681) of the ASMT gene, as well as mRNA expression for ASMT in recurrent DD-affected patients. We genotyped two polymorphisms in a group of 181 recurrent DD patients and in 149 control subjects. The study was performed using the polymerase chain reaction/restriction fragment length polymorphism method. The distribution of genotypes in both studied SNPs in the ASMT gene differed significantly between DD and healthy subjects. The presence of AA genotype of rs4446909 polymorphism and of GG genotype of rs5989681 polymorphism was associated with lower risk for having recurrent DD. In turn, patients with depression were characterised by reduced mRNA expression for ASMT. In addition, ASMT transcript level in both recurrent DD patients and in healthy subjects depended significantly on genotype distributions in both polymorphisms. In conclusion, our results suggest the ASMT gene as a susceptibility gene for recurrent DD. [source]


Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on noradrenaline-induced release of melatonin

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2001
Jens D. Mikkelsen
Abstract Hypocretin-1 (HCRT-1) and hypocretin 2 (HCRT-2), also known as orexin-A and orexin-B, are two neuropeptides derived from the same precursor. Hypocretinergic neurons have been found exclusively in the hypothalamic dorsolateral area. These neurons are implicated in sleep and feeding through activation of specific G-protein-coupled orexin-1 and orexin-2 receptor (OR-R1 and OR-R2). The purpose of this study was to determine the existence of the HCRT peptides in the central input of the rat pineal gland. Further, OR-R1 and OR-R2 expression was determined in the pineal gland and the effect of HCRT-2 on melatonin synthesis and secretion was analysed in dissociated rat pinealocytes. A large contingent of HCRT-positive nerve fibres and terminals were observed in the epithalamus, many of which entered into the pineal parenchyma. A significant number of nerve fibres endowed with positive boutons were identified in the pineal stalk, though the number of positive fibres decreased along the extension of the stalk. So far, no positive fibres have been found in the superficial pineal gland. RT-PCR analysis revealed the expression of OR-R2 mRNA, whereas OR-R1-receptor mRNA was not detected. When tested alone, HCRT-2 had no effect on secretion of melatonin from cultured rat pinealocytes. However, HCRT-2 partially inhibited (by a maximum of 30%) the ,-adrenergic-induced melatonin secretion. The same effect was seen on activation of N-acetyltransferase activity. The distribution and the large number of HCRT-positive fibres together with the effect on noradrenaline-mediated melatonin release through specific receptors suggests that these peptides may be significant central transmitters in pineal function, probably mediating homeostatic signals to the pineal gland. [source]


Modulation of Aanat gene transcription in the rat pineal gland

JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
Anthony K. Ho
Abstract The main function of the rat pineal gland is to transform the circadian rhythm generated in the suprachiasmatic nucleus into a rhythmic signal of circulating melatonin characterized by a large nocturnal increase that closely reflects the duration of night period. This is achieved through the tight coupling between environmental lighting and the expression of arylalkylamine- N -acetyltransferase, the rhythm-controlling enzyme in melatonin synthesis. The initiation of Aanat transcription at night is controlled largely by the norepinephrine-stimulated phosphorylation of cAMP response element-binding protein by protein kinase A. However, to accurately reflect the duration of darkness, additional signaling mechanisms also participate to fine-tune the temporal profile of adrenergic-induced Aanat transcription. Here, we reviewed some of these signaling mechanisms, with emphasis on the more recent findings. These signaling mechanisms can be divided into two groups: those involving modification of constitutively expressed proteins and those requiring synthesis of new proteins. This review highlights the pineal gland as an excellent model system for studying neurotransmitter-regulated rhythmic gene expression. [source]


Glutamate Receptor Subunit ,2 Is Highly Expressed in a Novel Population of Glial-Like Cells in Rat Pineal Glands in Culture

JOURNAL OF NEUROCHEMISTRY, Issue 3 2000
Shouki Yatsushiro
Abstract: The mammalian pineal gland uses L-glutamate as an intercellular chemical transmitter to regulate negatively melatonin synthesis. To receive glutamate signals, pinealocytes express at least three kinds of glutamate receptors: metabotropic receptor types 3 and 5 and an ionotropic receptor, GluR1. In this study, we examined whether or not the fourth class of ionotropic receptor, ,, which is known for its nondefinitive molecular function and its unique expression pattern in brain, is expressed in pineal gland. RT-PCR analyses with specific probes indicated the expression of mRNA of ,2 but not that of ,1 in pineal gland and cultured pineal cells. Western blotting analysis with polyclonal antibodies specific to the carboxyl-terminal region of the ,2 receptor recognized a single 110-kDa polypeptide of cerebellar membranes and specifically immunostained Purkinje cells. The ,2 antibodies recognized a 110-kDa polypeptide of pineal membranes and specifically immunostained huge glial-like cells with the occasional presence of several long, branching processes in a pineal cell culture. ,2 is not uniformly distributed throughout the cells and is relatively abundant at the periphery of the cell bodies and long processes, where the terminals of synaptophysin-positive processes of pinealocytes, a site for glutamate secretion, are frequently present. The ,2-positive cells constitute a very minor population among total pineal cells (,0.03%). Double immunolabeling with ,2 antibodies and antibodies against marker proteins for pineal interstitial cells clearly distinguishes ,2-positive pineal cells and other known interstitial cells, including glial fibrillary acidic protein- or vimentin-positive glial-like cells. These results indicated that the ,2 glutamate receptor is expressed in a novel subpopulation of pineal glial-like cells in culture and suggest the presence of a glutamate-mediated intercellular signal transduction mechanism between pinealocytes and ,2-expressing cells. The pineal cells may provide a good experimental system for studies on the function of glutamate receptor ,2. [source]


Chick Pineal Melatonin Synthesis

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
Cyclic AMP Control Abundance of Serotonin N -Acetyltransferase Protein, Light
Abstract: Melatonin production in the pineal gland is high at night and low during the day. This rhythm reflects circadian changes in the activity of serotonin N -acetyltransferase [arylalkylamine N -acetyltransferase (AA-NAT); EC 2.3.1.87], the penultimate enzyme in melatonin synthesis. The rhythm is generated by an endogenous circadian clock. In the chick, a clock is located in the pinealocyte, which also contains two phototransduction systems. One controls melatonin production by adjusting the clock and the other acts distal to the clock, via cyclic AMP mechanisms, to switch melatonin synthesis on and off. Unlike the clock in these cells, cyclic AMP does not appear to regulate activity by altering AA-NAT mRNA levels. The major changes in AA-NAT mRNA levels induced by the clock seemed likely (but not certain) to generate comparable changes in AA-NAT protein levels and AA-NAT activity. Cyclic AMP might also regulate AA-NAT activity via changes in protein levels, or it might act via other mechanisms, including posttranslational changes affecting activity. We measured AA-NAT protein levels and enzyme activity in cultured chick pineal cells and found that they correlated well under all conditions. They rose and fell spontaneously with a circadian rhythm. They also rose in response to agents that increase cyclic AMP. They were raised by agents that increase cyclic AMP, such as forskolin, and lowered by agents that decrease cyclic AMP, such as light and norepinephrine. Thus, both the clock and cyclic AMP can control AA-NAT activity by altering the total amount of AA-NAT protein. Effects of proteosomal proteolysis inhibitors suggest that changes in AA-NAT protein levels, in turn, reflect changes in the rate at which the protein is destroyed by proteosomal proteolysis. It is likely that cyclic AMP-induced changes in AA-NAT protein levels mediate rapid changes in chick pineal AA-NAT activity. Our results indicate that light can rapidly regulate the abundance of a specific protein (AA-NAT) within a photoreceptive cell. [source]


Activation of Arylalkylamine N -Acetyltransferase by Phorbol Esters in Bovine Pinealocytes Suggests a Novel Regulatory Pathway in Melatonin Synthesis

JOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2004
C. Schomerus
Abstract In all mammalian species investigated, noradrenaline activates a ,-adrenoceptor/cAMP/protein kinase A-dependent mechanism to switch on arylalkylamine N -acetyltransferase and melatonin biosynthesis in the pineal gland. Other compounds which are known to influence the melatonin-generating system are phorbol esters. The effect of phorbol esters on regulation of melatonin synthesis has been mainly investigated in rat pinealocytes. In these cells, phorbol esters do not increase cAMP levels and arylalkylamine N -acetyltransferase on their own; however, phorbol esters potentiate the effects on cAMP and AANAT activity induced upon ,-adrenoceptor stimulation. In the present study, we investigated the effect of phorbol esters on the regulation of melatonin synthesis in bovine pinealocytes. We show that, in these cells, the phorbol esters 4,-phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate have a direct stimulatory effect and induced 4,10-fold increases in AANAT protein levels, AANAT activity and melatonin production. The extent of these effects was similar to those induced by noradrenaline. Notably, responses to PMA were not accompanied by increases in cAMP levels. Northern blot analysis showed that Aanat mRNA levels did not change upon PMA treatment indicating that phorbol esters control AANAT at a post-transcriptional level. The effects on AANAT and melatonin production were reduced by use of protein kinase C inhibitors, but not by blockade of the cyclic AMP/protein kinase A pathway. Our results point towards a novel mechanism in the regulation of melatonin production that is cAMP-independent and involves protein kinase C. The study is of particular interest because regulation of melatonin biosynthesis in bovines may resemble that in primates more closely than that in rodents. [source]


Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer

JOURNAL OF PINEAL RESEARCH, Issue 1 2010
Brittney Jung-Hynes
Abstract:, Histone deacetylases (HDAC) have been under intense scientific investigation for a number of years. However, only recently the unique class III HDAC, sirtuins, have gained increasing investigational momentum. Originally linked to longevity in yeast, sirtuins and more specifically, SIRT1 have been implicated in numerous biological processes having both protective and/or detrimental effects. SIRT1 appears to play a critical role in the process of carcinogenesis, especially in age-related neoplasms. Similarly, alterations in circadian rhythms as well as production of the pineal hormone melatonin have been linked to aging and cancer risk. Melatonin has been found act as a differentiating agent in some cancer cells and to lower their invasive and metastatic status. In addition, melatonin synthesis and release occurs in a circadian rhythm fashion and it has been linked to the core circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes). Melatonin has also been associated with chronotherapy, the timely administration of chemotherapy agents to optimize trends in biological cycles. Interestingly, a recent set of studies have linked SIRT1 to the circadian rhythm machinery through direct deacetylation activity as well as through the nicotinamide adenine dinucleotide (NAD+) salvage pathway. In this review, we provide evidence for a possible connection between sirtuins, melatonin, and the circadian rhythm circuitry and their implications in aging, chronomodulation, and cancer. [source]


Evidence of immune system melatonin production by two pineal melatonin deficient mice, C57BL/6 and Swiss strains

JOURNAL OF PINEAL RESEARCH, Issue 1 2009
Araceli Gómez-Corvera
Abstract:, We evaluated two pineal melatonin deficient mice described in the literature, i.e., C57BL/6 and Swiss mice, as animal models for studying the immunomodulatory action of melatonin. Plasma melatonin levels in C57BL/6 and Swiss strains were detectable, but lower than levels in control C3H/HENHSD mice. Since these strains are suppose to be pineal melatonin deficient an extrapineal melatonin synthesis may contribute to plasma levels. Regarding cells and tissues from the immune system, all of them were found to synthesize melatonin although at low levels. N-acetyltransferase (AANAT) mRNA was also amplified in order to analyze the alternative splicing between exons 3,4 described for pineal C57BL/6 mice which generates an inclusion of a pseudoexon of 102 bp. For the pineal gland, both the wild type and the mutant isoforms were present in all mice strains although in different proportions. We observed a predominant wild type AANAT mature RNA in thymus, spleen and bone marrow cells. Peripheral blood mononuclear cells (PBMC) culture shown an evident AANAT amplification in all strains studied. Although the bands detected were less intense in melatonin deficient mice, the amplification almost reached the control cell intensity after stimulation with phytohemaglutinin (PHA). In summary, melatonin detection and AANAT mRNA expression in inbred and outbred mice clearly indicate that different cells and tissues from the immune system are able to synthesize melatonin. Thus, the pineal defect seems not to be generalized to all tissues, suggesting that other cells may compensate the low pineal melatonin production contributing to the measurable plasma melatonin level. [source]


Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation

JOURNAL OF PINEAL RESEARCH, Issue 2 2006
F. Afreen
Abstract:, Melatonin (N-acetyl-5-methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white light (control) and UV-B radiation (280,315 nm) for the synthesis of melatonin were investigated. Melatonin was extracted and quantified in seed, root, leaf and stem tissues and results revealed that the root tissues contained the highest concentration of melatonin; melatonin concentrations also increased with plant development. After 3 months of growth under red, blue and white fluorescent lamps, the melatonin concentrations were highest in red light exposed plants and varied depending on the wavelength of light spectrum in the following order red , blue , white light. Interestingly, in a more mature plant (6 months) melatonin concentration was increased considerably; the increments in concentration were X4, X5 and X3 in 6-month-old red, blue and white light exposed (control) plants, respectively. The difference in melatonin concentrations between blue and white light exposed (control) plants was not significant. The concentration of melatonin quantified in the root tissues was highest in the plants exposed to high intensity UV-B radiation for 3 days followed by low intensity UV-B radiation for 15 days. The reduction of melatonin under longer periods of UV-B exposure indicates that melatonin synthesis may be related to the integrated (intensity and duration) value of UV-B irradiation. Melatonin in G. uralensis plant is presumably for protection against oxidative damage caused as a response to UV irradiation. [source]


Role of calcium in the gating of isoproterenol-induced arylalkylamine N- acetyltransferase gene expression in the mouse pineal gland

JOURNAL OF PINEAL RESEARCH, Issue 1 2006
Mathieu Chansard
Abstract:, Melatonin and its autonomic regulation serve important physiological functions. We recently demonstrated that stimulation of beta-adrenergic receptors only increases nighttime arylalkylamine N- acetyltransferase (Aa-Nat, the rate-limiting enzyme in melatonin synthesis) mRNA levels in mouse pineal gland in vitro, which suggests that pineal clocks may gate Aa-Nat gene expression. In the present study, our data reveal that cAMP analog increased Aa-Nat at any time of day but only in the presence of ionomycin. Using Fura-2AM in ratiometric calcium measurements, we show that isoproterenol stimulation increased intracellular free calcium levels at night, contrary to previous reports. Further, intra- or extracellular calcium depletion suppressed the isoproterenol-induced calcium responses as well as Aa-Nat gene expression. These results suggest calcium may be a critical factor in isoproterenol-induced Aa-Nat gene expression, which may be limited in the daytime. We also found that basal intracellular calcium levels were lower during the night and responses to isoproterenol and KCl depolarization were more robust. In addition, pineals of Cryptochrome mutant mice exhibited no significant difference between day and nighttime basal calcium or isoproterenol response. Together, these results suggest that basal calcium levels in the pineal may be controlled by the endogenous pineal clock, which may influence calcium dynamics, cellular homeostasis and sensitivity to external stimulation. Although the mechanism underlying Aa-Nat gene expression has been well studied, the role of calcium as a link between the pineal clock and Aa-Nat gene expression has been underestimated in rodent pineals. [source]


Expression of N -methyl- D -aspartate (NMDA) and , -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) GluR2/3 receptors in the developing rat pineal gland

JOURNAL OF PINEAL RESEARCH, Issue 3 2005
C. Kaur
Abstract:, The expression of , -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate (GluR2/3) receptors and N -methyl- d -aspartate receptor subtype 1 (NMDAR1) was carried out by immunohistochemistry, double immunofluorescence and real-time RT-PCR analysis in the pineal glands of 1-day to 6-wk-old rats in the present study. GluR2/3 immunopositive cells were distributed throughout the pineal gland and showed branching processes in all age groups. The NMDAR1 immunoreactivity, however, was observed in fewer branched cells. A constitutive mRNA expression of NMDAR1, GluR2 and GluR3 was detected in the pineal glands of various ages and showed no significant difference between the age groups studied. Immunohistochemical and double immunofluorescence results showed that the GluR2/3 were mainly expressed and co-localized with OX-42-positive microglia/macrophages and the glial fibrillary acidic protein (GFAP)-positive astrocytes. Co-localization of NMDAR1 with OX-42- and GFAP-positive cells was much less. The expression of these receptors on the glial cells suggests that they may be involved in the development and growth of the pineal gland in the early postnatal period (1 day to 3 wk) and subsequently in the regulation of melatonin synthesis. [source]