Melatonin Receptor (melatonin + receptor)

Distribution by Scientific Domains


Selected Abstracts


Photic Regulation of mt1 Melatonin Receptors in the Siberian Hamster Pars Tuberalis and Suprachiasmatic Nuclei: Involvement of the Circadian Clock and Intergeniculate Leaflet

JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2000
Schuster
In the Siberian hamster suprachiasmatic nuclei and pars tuberalis of the pituitary, high affinity mt1 melatonin receptors are present. We have previously shown that night applied light pulse induced an increase in mt1 mRNA expression in the suprachiasmatic nuclei of this species, independently of the endogenous melatonin. Here, we report the photic regulation of melatonin receptor density and mRNA expression in the suprachiasmatic nuclei and pars tuberalis of pinealectomized Siberian hamsters and the implication in this control of either the circadian clock or the intergeniculate leaflet. The results show that: (1) A 1-h light pulse, delivered during the night, induces a transitory increase in mt1 mRNA expression in the suprachiasmatic nuclei and pars tuberalis. After 3 h this increase has totally disappeared (suprachiasmatic nuclei) or is greatly reduced (pars tuberalis). (2) The melatonin receptor density, in the suprachiasmatic nuclei, is not affected by 1 or 3 h of light, while it is strongly increased in the pars tuberalis. (3) In hamsters kept in constant darkness, the mt1 mRNA rise is gated to the subjective night in the suprachiasmatic nuclei and pars tuberalis. In contrast, the light-induced increase in melatonin binding is also observed in the subjective day in the pars tuberalis. (4) intergeniculate leaflet lesion totally inhibits the mt1 mRNA expression rise in the suprachiasmatic nuclei, while it has no effect on the light-induced increase in mt1 mRNA in the pars tuberalis. However, the light-induced increase in melatonin receptor density is totally prevented by the intergeniculate leaflet lesion in the pars tuberalis. These results show that: (1) the photic regulations of mt1 mRNA expression and receptor density are independent of each other in both the suprachiasmatic nuclei and pars tuberalis; and (2) the circadian clock and the intergeniculate leaflet are implicated in the photic regulation of melatonin receptors but their level of action differs totally between the suprachiasmatic nuclei and pars tuberalis. [source]


2-Phenylmelatonin: A Partial Agonist at Enteric Melatonin Receptors

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2000
Maria Grazia Santagostino-Barbone
The effect of the melatonin receptor ligand, 2-phenylmelatonin, has been assessed in isolated strips of the guinea-pig proximal colon. 2-Phenylmelatonin (0.01 nM-1 ,M) caused a concentration-dependent contractile response. The potency value (,log EC50) was 9.3±1.0. The maximum effect was 25±4% of that elicited by the maximally effective concentration (0.3 ,M) of 5-HT and 43±3% of that by the maximally effective concentration (10 ,M) of melatonin. When used as an antagonist, 2-phenylmelatonin (0.01 nM and 0.1 nM) concentration-dependently inhibited melatonin-induced contractions with depression of the maximum response by 25% and 54%, respectively. Higher (1 nM) 2-phenylmelatonin concentrations failed to antagonize melatonin-induced response. Prazosin (0.3 ,M), a selective antagonist of melatonin MT3 sites, antagonized melatonin-induced contractions to an extent similar to that induced by 0.01 nM 2-phenylmelatonin (with 30% reduction of the maximum effect to melatonin). The combination of 0.3 ,M prazosin and 0.01 nM 2-phenylmelatonin caused antagonism similar in extent to that caused by each individual antagonist. 2-Phenylmelatonin at subnanomolar concentrations behaves as an antagonist of melatonin-induced contractile responses while at nanomolar/micromolar concentrations it behaves as a weak contractile agonist. [source]


Sexual differences and effect of photoperiod on melatonin receptor in avian brain

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 1 2001
Nicoletta Aste
Abstract Several data suggest that melatonin may influence avian reproduction by acting at the level of the hypothalamic-hypophisial-gonadal axis, and/or on neural circuits controlling reproductive behaviours. The action of melatonin is exerted through specific receptors whose distribution and pharmacological properties have been extensively investigated. This review will focus on the distribution, sexual dimorphism, and dependence upon the photoperiod of melatonin binding sites in avian species with a special emphasis on Japanese quail. Melatonin receptors are widely distributed in avian brain. They are mostly present in the visual pathways of all the investigated species and in the song controlling nuclei of oscine birds. Sexual dimorphism of melatonin binding sites (higher density in males than in females) was detected in some telencephalic nuclei of songbirds, in the visual pathways, and in the preoptic area of quail. The last region plays a key role in the activation of male quail copulatory behaviour and it hosts a large population of gonadotropin-releasing hormone-containing neurons. Sexual dimorphism of melatonin-binding sites in the above-mentioned regions suggests a differential role for this hormone in the modulation of visual perception, gonadotropin production, and seasonally activated behaviours in male and female quail. Further studies are necessary to understand interrelationships among photic cues, gonadal steroids, density, and sexually dimorphic distribution of melatonin receptors. Microsc. Res. Tech. 55:37,47, 2001. © 2001 Wiley-Liss, Inc. [source]


Rhythmic expression of clock genes in the ependymal cell layer of the third ventricle of rodents is independent of melatonin signaling

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
Shinobu Yasuo
Abstract Reproductive physiology is regulated by the photoperiod in many mammals. Decoding of the photoperiod involves circadian clock mechanisms, although the molecular basis remains unclear. Recent studies have shown that the ependymal cell layer lining the infundibular recess of the third ventricle (EC) is a key structure for the photoperiodic gonadal response. The EC exhibits daylength-dependent changes in the expression of photoperiodic output genes, including the type 2 deiodinase gene (Dio2,). Here we investigated whether clock genes (Per1 and Bmal1) and the albumin D-binding protein gene (Dbp) are expressed in the EC of Syrian hamsters, and whether their expression differs under long-day and short-day conditions. Expression of all three genes followed a diurnal rhythm; expression of Per1 and Dbp in the EC peaked around lights-off, and expression of Bmal1 peaked in the early light phase. The amplitude of Per1 and Dbp expression was higher in hamsters kept under long-day conditions than in those kept under short-day conditions. Notably, the expression of these genes was not modified by exogenous melatonin within 25 h after injection, whereas Dio2 expression was inhibited 19 h after injection. Targeted melatonin receptor (MT1, MT2, and both MT1 and MT2) disruption in melatonin-proficient C3H mice did not affect the rhythmic expression of Per1 in the EC. These data show the existence of a molecular clock in the rodent EC. In the hamster, this clock responds to long-term changes in the photoperiod, but is independent of acute melatonin signals. In mice, the EC clock is not affected by deletion of melatonin receptors. [source]


Diurnal Change of Thyroid-Stimulating Hormone mRNA Expression in the Rat Pars Tuberalis

JOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2007
S. Aizawa
Thyroid-stimulating hormone (TSH)-producing cells (TSH cells), which account for a large fraction of the cells in the rat pars tuberalis (PT), have been found to express MT1 melatonin receptor and mammalian clock genes at high densities. Although these findings suggest that TSH production in the rat PT is regulated by melatonin and/or the biological clock, there have been no studies focusing on the diurnal change and regulation mechanism of TSH production in the rat PT. Therefore, in the present study, we examined diurnal changes of in TSH, and ,-glycoprotein subunit (,GSU) mRNA expression and TSH immunoreactivity (-ir) in the rat PT, and also examined the relationship between melatonin and TSH production in vivo. Both TSH, mRNA expression and ,GSU mRNA expression in the PT showed diurnal variations: the expression levels were lowest at the light phase [Zeitgeber time (ZT)4] and high at the dark phase (ZT12 and ZT20). TSH-ir in the PT showed the lowest level at ZT4, as was found for mRNA expression. Interestingly, TSH-ir, which was confined to the Golgi apparatus at ZT4, spread to the cytoplasm, and most of the TSH cells in the PT were uniformly immunostained in the cytoplasm at ZT20. Despite the fact that chronic administration of melatonin suppressed TSH, and ,GSU mRNA expression, TSH-ir in the PT was significantly enhanced. These findings results clearly show that there are diurnal changes in TSH expression and accumulation in rat PT-TSH cells and suggest that these fluctuations are regulated by melatonin. [source]


Novel bromomelatonin derivatives suppress osteoclastic activity and increase osteoblastic activity: implications for the treatment of bone diseases

JOURNAL OF PINEAL RESEARCH, Issue 3 2008
Nobuo Suzuki
Abstract:, The teleost scale is a calcified tissue that contains osteoclasts, osteoblasts, and bone matrix, all of which are similar to those found in mammalian membrane bone. Using the goldfish scale, we recently developed a new in vitro assay system and previously demonstrated that melatonin suppressed both osteoclastic and osteoblastic activities in this assay system. In mammals, 2-bromomelatonin possesses a higher affinity for the melatonin receptor than does melatonin. Using a newly developed synthetic method, we synthesized 2-bromomelatonin, 2,4,6-tribromomelatonin and novel bromomelatonin derivatives (1-allyl-2,4,6-tribromomelatonin, 1-propargyl-2,4,6-tribromomelatonin, 1-benzyl-2,4,6-tribromomelatonin, and 2,4,6,7-tetrabromomelatonin) and then examined the effects of these chemicals on osteoclasts and osteoblasts. All bromomelatonin derivatives, as well as melatonin, had an inhibitory action on osteoclasts. In particular, 1-benzyl-2,4,6-tribromomelatonin (benzyl-tribromomelatonin) possessed a stronger activity than melatonin. At an in vitro concentration of 10,10 m, benzyl-tribromomelatonin still suppressed osteoclastic activity after 6 hr of incubation. In reference to osteoblasts, all bromomelatonin derivatives had a stimulatory action, although melatonin inhibited osteoblastic activity. In addition, estrogen receptor mRNA expression (an osteoblastic marker) was increased in benzyl-tribromomelatonin (10,7 m)-treated scales. Taken together, the present results strongly suggest that these novel melatonin derivatives have significant potential for use as beneficial drug for bone diseases such as osteoporosis. [source]


Expression of the melatonin receptor (MT) 1 in benign and malignant human bone tumors

JOURNAL OF PINEAL RESEARCH, Issue 2 2007
Cyril D. Toma
Abstract:, The beneficial effects of melatonin on bone homeostasis have been shown in various diseases. As this indoleamine causes dose-dependent modulation of bone-forming osteoblast and bone-resorbing osteoclast activities by receptor-independent and -dependent pathways, we investigated the expression of G-protein-coupled melatonin receptors (MTs) in malignant and non-malignant human bone lesions. By TaqMan polymerase chain reaction (PCR), we analyzed 30 specimens from osteosarcoma and 11 from benign bone tumors for MT1-mRNA expression. Furthermore, we determined mRNA expression levels of the osteoclast activity-stimulating receptor activator of nuclear factor- , B ligand (RANKL) and its counterpart osteoprotegerin (OPG). Although mean MT1-mRNA levels were similar (P = 0.596) in malignant (4.39 ± 4.98-fold) and benign samples (4.64 ± 6.81-fold), the highest MT1-mRNA levels (up to 27-fold) were observed in individual osteosarcomas, particularly, in two specimens of patients with local recurrence of the tumor. Moreover, mean RANKL- and OPG-mRNA levels were similar in malignant and benign specimens (RANKL: 7.38 ± 9.61-fold versus 3.57 ± 3.11-fold, P = 0.207; OPG: 23.45 ± 32.76 versus 8.07 ± 7.23-fold, P = 0.133). Again, highest RANKL- and OPG-mRNA levels (up to 41- and 160-fold, respectively) were observed in individual osteosarcomas. Expression of MT1-mRNA was confirmed in two human osteosarcoma cell lines (HOS, MG63). High expression levels of MT1-mRNA together with low OPG-mRNA were found in both osteosarcoma cell lines, while in normal human osteoblasts and bone marrow stromal cells, high OPG-mRNA levels were associated with low MT1-mRNA levels. These data on the abundant expression of MT1-mRNA in human bone tumors and osteosarcoma cells lines suggest an important role for MT1 in bone pathology. [source]


Signaling mechanisms of melatonin in antiproliferation of hormone-refractory 22Rv1 human prostate cancer cells: implications for prostate cancer chemoprevention

JOURNAL OF PINEAL RESEARCH, Issue 2 2007
Chun W. Tam
Abstract:, There is an unmet clinical demand for safe and effective pharmaceuticals/nutraceuticals for prostate cancer prevention and hormone-refractory prostate cancer treatment. Previous laboratory and human studies of our laboratory demonstrated an association between the antiproliferative action of melatonin and melatonin MT1 receptor expression in prostate cancer. The aim of this study was to determine, using a pharmacological approach, the signaling mechanisms of melatonin in hormone-refractory 22Rv1 human prostate cancer cell antiproliferation. Both immunoreactive MT1 and MT2 subtypes of G protein-coupled melatonin receptor were expressed in 22Rv1 cells. Melatonin inhibited, concentration dependently, cell proliferation, upregulated p27Kip1 gene transcription and protein expression, and downregulated activated androgen signaling in 22Rv1 cells. While the effects of melatonin were mimicked by 2-iodomelatonin, a high-affinity nonselective MT1 and MT2 receptor agonist, melatonin effects were blocked by luzindole, a nonselective MT1 and MT2 receptor antagonist, but were unaffected by 4-phenyl-2-propionamidotetraline, a selective MT2 receptor antagonist. Importantly, we discovered that the antiproliferative effect of melatonin exerted via MT1 receptor on p27Kip1 gene and protein upregulation is mediated by a novel signaling mechanism involving co-activation of protein kinase C (PKC) and PKA in parallel. Moreover, we also showed that a melatonin/MT1/PKC mechanism is involved in melatonin-induced downregulation of activated androgen signal transduction in 22Rv1 cells. Taken together with the known molecular mechanisms of prostate cancer progression and transition to androgen independence, our data provide strong support for melatonin to be a promising small-molecule useful for prostate cancer primary prevention and secondary prevention of the development and progression of hormone refractoriness. [source]


Products of tryptophan catabolism induce Ca2+ release and modulate the cell cycle of Plasmodium falciparum malaria parasites

JOURNAL OF PINEAL RESEARCH, Issue 3 2005
Flávio H. Beraldo
Abstract:, Intraerythrocytic malaria parasites develop in a highly synchronous manner. We have previously shown that the host hormone melatonin regulates the circadian rhythm of the rodent malaria parasite, Plasmodium chabaudi, through a Ca2+ -based mechanism. Here we show that melatonin and other molecules derived from tryptophan, i.e. N -acetylserotonin, serotonin and tryptamine, also modulate the cell cycle of human malaria parasite P. falciparum by inducing an increase in cytosolic free Ca2+. This occurs independently of the extracellular Ca2+ concentration, indicating that these molecules induce Ca2+ mobilization from intracellular stores in the trophozoite. This in turn leads to an increase in the proportion of schizonts. The effects of the indolamines in increasing cytosolic free Ca2+ and modulating the parasite cell cycle are both abrogated by an antagonist of the melatonin receptor, luzindole, and by the phospholipase inhibitor, U73122. [source]


Reduced hippocampal MT2 melatonin receptor expression in Alzheimer's disease

JOURNAL OF PINEAL RESEARCH, Issue 1 2005
Egemen Savaskan
Abstract:, The aim of the present study was to identify the distribution of the second melatonin receptor (MT2) in the human hippocampus of elderly controls and Alzheimer's disease (AD) patients. This is the first report of immunohistochemical MT2 localization in the human hippocampus both in control and AD cases. The specificity of the MT2 antibody was ascertained by fluorescence microscopy using the anti-MT2 antibody in HEK 293 cells expressing recombinant MT2, in immunoblot experiments on membranes from MT2 expressing cells, and, finally, by immunoprecipitation experiments of the native MT2. MT2 immunoreactivity was studied in the hippocampus of 16 elderly control and 16 AD cases. In controls, MT2 was localized in pyramidal neurons of the hippocampal subfields CA1-4 and in some granular neurons of the stratum granulosum. The overall intensity of the MT2 staining was distinctly decreased in AD cases. The results indicate that MT2 may be involved in mediating the effects of melatonin in the human hippocampus, and this mechanism may be heavily impaired in AD. [source]


First cloning and functional characterization of a melatonin receptor in fish brain: a novel one?

JOURNAL OF PINEAL RESEARCH, Issue 2 2002
Pascaline Gaildrat
Melatonin, a neuroendocrine transducer of photoperiod, influences a number of physiological functions and behaviors through specific seven transmembrane domains receptors. We report here the first full-length cloning and functional characterization of a melatonin receptor (P2.6) in a fish, the pike (Teleost). P2.6 encodes a protein that is ,80% identical to melatonin receptors previously isolated partially in non-mammals and classified as members of the Mel1b subtype; but, it shares only 61% identity with the full-length human Mel1b melatonin receptor (hMT2). Expression of P2.6 results in ligand binding characteristics similar to that described for endogenous melatonin receptors. Selective antagonists of the hMT2 (4-phenyl-2-propionamidotetraline and luzindole) were poor competitors of 2-[125I]iodomelatonin binding to the recombinant receptor. In Chinese hamster ovary cells expressing both the cystic fibrosis transmembrane conductance regulator chloride channel and P2.6 receptor, melatonin counteracted the forskolin induced activation of the channel. The results are best explained by a selective inhibition of the adenylyl cyclase. By reverse transcription-polymerase chain reaction, P2.6 mRNA appeared expressed in the optic tectum and, to lesser extent, in the retina and pituitary. In conclusion, these results, together with those of a phylogenetic analysis, suggest that P2.6 might belong to a distinct subtype group within the vertebrate melatonin receptor family. [source]


Expression and functional characterization of the mt1 melatonin receptor from rat brain in Xenopus oocytes: evidence for coupling to the phosphoinositol pathway

JOURNAL OF PINEAL RESEARCH, Issue 3 2001
Cirstin Blumenau
Melatonin-sensitive receptors were expressed in Xenopus laevis oocytes following an injection of mRNA from rat brain. The administration of 0.1,100 ,mol/L melatonin to voltage-clamped oocytes activates calcium-dependent chloride currents via a pertussis toxin-sensitive G protein and the phosphoinositol pathway. To determine which melatonin receptor type (mt1, MT2, MT3) is functionally expressed in the Xenopus oocytes, we used (i) agonists and antagonists of different receptor types to characterize the pharmacological profile of the expressed receptors and (ii) a strategy of inhibiting melatonin receptor function by antisense oligonucleotides. During pharmacological screening administration of the agonists 2-iodomelatonin and 2-iodo-N-butanoyl-5-methoxytryptamine (IbMT) to the oocytes resulted in oscillatory membrane currents, whereas the administration of the MT3 agonist 5-methoxycarbonylamino-N-acetyltryptamine (GR135,531) exerted no detectable membrane currents. The melatonin response was abolished by a preceding administration of the antagonists 2-phenylmelatonin and luzindole but was unaffected by the MT3 antagonist prazosin and the MT2 antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT). In the antisense experiments, in the control group the melatonin response occurred in 45 of 54 mRNA-injected oocytes (83%). Co-injection of the antisense oligonucleotide, corresponding to the mt1 receptor mRNA, caused a marked and significant reduction in the expression level (13%; P<0.001). In conclusion, the results demonstrate that injection of mRNA from rat brain in Xenopus oocytes induced the expression of the mt1 receptor which is coupled to the phosphoinositol pathway. [source]


Differential responsiveness of MCF-7 human breast cancer cell line stocks to the pineal hormone, melatonin

JOURNAL OF PINEAL RESEARCH, Issue 4 2000
Prahlad T. Ram
The estrogen receptor (ER)-positive MCF-7 human breast cancer cell line has been used extensively for the study of estrogen-responsive human breast cancer. However, various levels of estrogen responsiveness have been described in different stocks of MCF-7 cells. Because we have previously shown that the pineal hormone, melatonin, inhibits proliferation of MCF-7 cells and can modulate ER expression and transactivation, we investigated if various stocks of MCF-7 cells exhibit a differential responsiveness to the anti-proliferative effects of melatonin and the possible mechanisms involved. The MCF-7 stocks (M, O, H) were examined for: (1) mitogenic response to estradiol; (2) steady-state ER mRNA levels; (3) expression of the mt1 melatonin membrane receptor; (4) growth inhibition by melatonin; and (5) melatonin's modulation of expression of the ER and the estrogen-regulated genes, PgR, TGF, and pS2. For all of these parameters, there was a stock-specific response which showed: MCF-7M>MCF-7O>MCF-7 H. These results demonstrate that there are significant differences in the responsiveness of various stocks of MCF-7 breast cancer cells to the growth-inhibitory effects of melatonin which can be correlated with both the level of ER mRNA expression and the degree of estrogen-responsiveness. These findings suggest that not only may these differences have some impact on the cells' estrogen-response pathway, but also that the primary growth-inhibitory effects of melatonin are transduced through the membrane-associated G-protein coupled mt1 melatonin receptor. [source]


Sexual differences and effect of photoperiod on melatonin receptor in avian brain

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 1 2001
Nicoletta Aste
Abstract Several data suggest that melatonin may influence avian reproduction by acting at the level of the hypothalamic-hypophisial-gonadal axis, and/or on neural circuits controlling reproductive behaviours. The action of melatonin is exerted through specific receptors whose distribution and pharmacological properties have been extensively investigated. This review will focus on the distribution, sexual dimorphism, and dependence upon the photoperiod of melatonin binding sites in avian species with a special emphasis on Japanese quail. Melatonin receptors are widely distributed in avian brain. They are mostly present in the visual pathways of all the investigated species and in the song controlling nuclei of oscine birds. Sexual dimorphism of melatonin binding sites (higher density in males than in females) was detected in some telencephalic nuclei of songbirds, in the visual pathways, and in the preoptic area of quail. The last region plays a key role in the activation of male quail copulatory behaviour and it hosts a large population of gonadotropin-releasing hormone-containing neurons. Sexual dimorphism of melatonin-binding sites in the above-mentioned regions suggests a differential role for this hormone in the modulation of visual perception, gonadotropin production, and seasonally activated behaviours in male and female quail. Further studies are necessary to understand interrelationships among photic cues, gonadal steroids, density, and sexually dimorphic distribution of melatonin receptors. Microsc. Res. Tech. 55:37,47, 2001. © 2001 Wiley-Liss, Inc. [source]


Rhythmic expression of clock genes in the ependymal cell layer of the third ventricle of rodents is independent of melatonin signaling

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
Shinobu Yasuo
Abstract Reproductive physiology is regulated by the photoperiod in many mammals. Decoding of the photoperiod involves circadian clock mechanisms, although the molecular basis remains unclear. Recent studies have shown that the ependymal cell layer lining the infundibular recess of the third ventricle (EC) is a key structure for the photoperiodic gonadal response. The EC exhibits daylength-dependent changes in the expression of photoperiodic output genes, including the type 2 deiodinase gene (Dio2,). Here we investigated whether clock genes (Per1 and Bmal1) and the albumin D-binding protein gene (Dbp) are expressed in the EC of Syrian hamsters, and whether their expression differs under long-day and short-day conditions. Expression of all three genes followed a diurnal rhythm; expression of Per1 and Dbp in the EC peaked around lights-off, and expression of Bmal1 peaked in the early light phase. The amplitude of Per1 and Dbp expression was higher in hamsters kept under long-day conditions than in those kept under short-day conditions. Notably, the expression of these genes was not modified by exogenous melatonin within 25 h after injection, whereas Dio2 expression was inhibited 19 h after injection. Targeted melatonin receptor (MT1, MT2, and both MT1 and MT2) disruption in melatonin-proficient C3H mice did not affect the rhythmic expression of Per1 in the EC. These data show the existence of a molecular clock in the rodent EC. In the hamster, this clock responds to long-term changes in the photoperiod, but is independent of acute melatonin signals. In mice, the EC clock is not affected by deletion of melatonin receptors. [source]


Melatonin: therapeutic and clinical utilization

INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 5 2007
A. Altun
Summary Melatonin, acting through melatonin receptors, is involved in numerous physiological processes including circadian entrainment, blood pressure regulation, oncogenesis, retinal physiology, seasonal reproduction, ovarian physiology, immune function and most recently in inducing osteoblast differentiation. Moreover, melatonin was proved to be a potent-free radical scavenger and a broad-spectrum antioxidant. More research is required into the effects of therapeutically modulating the melatoninergic system on circadian haemodynamics and rhythm under varying physiopathological conditions and the possible impact on morbidity and mortality in humans. [source]


Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells

JOURNAL OF NEUROCHEMISTRY, Issue 5 2005
Lyda M. Rincón Castro
Abstract Valproic acid (VPA) is a potent anti-epileptic and effective mood stabilizer. It is known that VPA enhances central GABAergic activity and activates the mitogen-activated protein kinase,extracellular signal-regulated kinase (MAPK,ERK) pathway. It can also inhibit various isoforms of the enzyme, histone deacetylase (HDAC), which is associated with modulation of gene transcription. Recent in vivo studies indicate a neuroprotective role for VPA, which has been found to up-regulate the expression of brain-derived neurotrophic factor (BDNF) in the rat brain. Given the interaction between the pineal hormone, melatonin, and GABAergic systems in the central nervous system, the effects of VPA on the expression of the mammalian melatonin receptor subtypes, MT1 and MT2, were examined in rat C6 glioma cells. The effects of VPA on the expression of glial cell line-derived neurotrophic factor (GDNF) and BDNF were also examined. RT-PCR studies revealed a significant induction of melatonin MT1 receptor mRNA in C6 cells following treatment with 3 or 5 mm VPA for 24 h or 5 mm VPA for 48 h. Western analysis and immunocytochemical detection confirmed that the VPA-induced increase in MT1 mRNA results in up-regulation of MT1 protein expression. Blockade of the MAPK,ERK pathway by PD98059 enhanced the effect of VPA on MT1 expression, suggesting a negative role for this pathway in MT1 receptor regulation. In addition, significant increases in BDNF, GDNF and HDAC mRNA expression were observed after treatment with VPA for 24 or 48 h. Taken together, the present findings suggest that the neuroprotective properties of VPA involve modulation of neurotrophic factors and receptors for melatonin, which is also thought to play a role in neuroprotection. Moreover, the foregoing suggests that combinations of VPA and melatonin could provide novel therapeutic strategies in neurological and psychiatric disorders. [source]


Photic Regulation of mt1 Melatonin Receptors in the Siberian Hamster Pars Tuberalis and Suprachiasmatic Nuclei: Involvement of the Circadian Clock and Intergeniculate Leaflet

JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2000
Schuster
In the Siberian hamster suprachiasmatic nuclei and pars tuberalis of the pituitary, high affinity mt1 melatonin receptors are present. We have previously shown that night applied light pulse induced an increase in mt1 mRNA expression in the suprachiasmatic nuclei of this species, independently of the endogenous melatonin. Here, we report the photic regulation of melatonin receptor density and mRNA expression in the suprachiasmatic nuclei and pars tuberalis of pinealectomized Siberian hamsters and the implication in this control of either the circadian clock or the intergeniculate leaflet. The results show that: (1) A 1-h light pulse, delivered during the night, induces a transitory increase in mt1 mRNA expression in the suprachiasmatic nuclei and pars tuberalis. After 3 h this increase has totally disappeared (suprachiasmatic nuclei) or is greatly reduced (pars tuberalis). (2) The melatonin receptor density, in the suprachiasmatic nuclei, is not affected by 1 or 3 h of light, while it is strongly increased in the pars tuberalis. (3) In hamsters kept in constant darkness, the mt1 mRNA rise is gated to the subjective night in the suprachiasmatic nuclei and pars tuberalis. In contrast, the light-induced increase in melatonin binding is also observed in the subjective day in the pars tuberalis. (4) intergeniculate leaflet lesion totally inhibits the mt1 mRNA expression rise in the suprachiasmatic nuclei, while it has no effect on the light-induced increase in mt1 mRNA in the pars tuberalis. However, the light-induced increase in melatonin receptor density is totally prevented by the intergeniculate leaflet lesion in the pars tuberalis. These results show that: (1) the photic regulations of mt1 mRNA expression and receptor density are independent of each other in both the suprachiasmatic nuclei and pars tuberalis; and (2) the circadian clock and the intergeniculate leaflet are implicated in the photic regulation of melatonin receptors but their level of action differs totally between the suprachiasmatic nuclei and pars tuberalis. [source]


C-terminal domains within human MT1 and MT2 melatonin receptors are involved in internalization processes

JOURNAL OF PINEAL RESEARCH, Issue 2 2008
Shalini Sethi
Abstract:, Melatonin, a molecule implicated in a variety of diseases, including cancer, often exerts its effects through G-protein-coupled melatonin receptors, MT1 and MT2. In this study, we sought to understand further the domains involved in the function and desensitization patterns of these receptors through site-directed mutagenesis. Two mutations were constructed in the cytoplasmic C-terminal tail of each receptor subtype: (i) a cysteine residue in the C-terminal tail was mutated to alanine, thus removing a putative palmitoylation site, and a site possibly required for normal receptor function (MT1C7.72A and MT2C7.77A) and (ii) the C-terminal tail in the MT1 and MT2 receptors was truncated, removing the putative phosphorylation and ,-arrestin binding sites (MT1Y7.64 and MT2Y7.64). These mutations did not alter the affinity of 2-[125I]-iodomelatonin binding to the MT1 or MT2 receptors. Using confocal microscopy, it was determined that the putative palmitoylation site (cysteine residue) did not play a role in receptor internalization; however, this residue was essential for receptor function, as determined by 3,,5,-cyclic adenosine monophosphate (cAMP) accumulation assays. Truncation of the C-terminal tail of both receptors (MT1Y7.64 and MT2Y7.64) inhibited internalization as well as the cAMP response, suggesting the importance of the C-terminal tail in these receptor functions. [source]


Expression of the melatonin receptor (MT) 1 in benign and malignant human bone tumors

JOURNAL OF PINEAL RESEARCH, Issue 2 2007
Cyril D. Toma
Abstract:, The beneficial effects of melatonin on bone homeostasis have been shown in various diseases. As this indoleamine causes dose-dependent modulation of bone-forming osteoblast and bone-resorbing osteoclast activities by receptor-independent and -dependent pathways, we investigated the expression of G-protein-coupled melatonin receptors (MTs) in malignant and non-malignant human bone lesions. By TaqMan polymerase chain reaction (PCR), we analyzed 30 specimens from osteosarcoma and 11 from benign bone tumors for MT1-mRNA expression. Furthermore, we determined mRNA expression levels of the osteoclast activity-stimulating receptor activator of nuclear factor- , B ligand (RANKL) and its counterpart osteoprotegerin (OPG). Although mean MT1-mRNA levels were similar (P = 0.596) in malignant (4.39 ± 4.98-fold) and benign samples (4.64 ± 6.81-fold), the highest MT1-mRNA levels (up to 27-fold) were observed in individual osteosarcomas, particularly, in two specimens of patients with local recurrence of the tumor. Moreover, mean RANKL- and OPG-mRNA levels were similar in malignant and benign specimens (RANKL: 7.38 ± 9.61-fold versus 3.57 ± 3.11-fold, P = 0.207; OPG: 23.45 ± 32.76 versus 8.07 ± 7.23-fold, P = 0.133). Again, highest RANKL- and OPG-mRNA levels (up to 41- and 160-fold, respectively) were observed in individual osteosarcomas. Expression of MT1-mRNA was confirmed in two human osteosarcoma cell lines (HOS, MG63). High expression levels of MT1-mRNA together with low OPG-mRNA were found in both osteosarcoma cell lines, while in normal human osteoblasts and bone marrow stromal cells, high OPG-mRNA levels were associated with low MT1-mRNA levels. These data on the abundant expression of MT1-mRNA in human bone tumors and osteosarcoma cells lines suggest an important role for MT1 in bone pathology. [source]


Melatonin enhances the hypoxic response of rat carotid body chemoreceptor

JOURNAL OF PINEAL RESEARCH, Issue 3 2005
Yueping Chen
Abstract:, Melatonin attenuates carotid chemoreceptor response to hypercapnic acidosis and may contribute to the effect of circadian rhythms on the chemoreflex. The purpose of this study was to test the hypothesis that melatonin modulates rat carotid chemoreceptor response to hypoxia. To examine the effect of melatonin on the hypoxic response of the chemosensitive cells, cytosolic calcium ([Ca2+]i) was measured by spectrofluorometry in fura-2-loaded type-I (glomus) cells dissociated from rat carotid bodies. Melatonin (0.01,10 nm) did not change the resting [Ca2+]i level of the glomus cells but it concentration-dependently increased peak [Ca2+]i response to cyanide or deoxygenated buffer. An agonist of melatonin receptors, iodomelatonin also enhanced the [Ca2+]i response to hypoxia. The melatonin-induced enhancement of the [Ca2+]i response was abolished by pretreatment with nonselective mt1/MT2 antagonist, luzindole, and by MT2 antagonists, 4-phenyl-2-propionamidotetraline or DH97. These findings suggest that melatonin receptors in the glomus cells mediate the effect of melatonin on the chemoreceptor response to hypoxia. In addition, melatonin increased the carotid afferent response to hypoxia in unitary activities recorded from the sinus nerve in isolated carotid bodies superfused with bicarbonate-buffer saline. Furthermore, plethysmographic measurement of ventilatory activities in unanesthetized rats revealed that melatonin (1 mg/kg, i.p.) increased the ventilatory response to hypoxia. Hence, the circadian rhythm of melatonin in arterial blood can modulate the carotid chemoreceptor response to hypoxia. This modulation may be a physiological mechanism involved in the day-light differences in ventilatory activities. [source]


Acutely administered melatonin decreases somatostatin-binding sites and the inhibitory effect of somatostatin on adenylyl cyclase activity in the rat hippocampus

JOURNAL OF PINEAL RESEARCH, Issue 2 2004
Rosa María Izquierdo-Claros
Abstract:, Melatonin is known to increase neuronal activity in the hippocampus, an effect contrary to that of somatostatin (somatotropin release-inhibiting factor, SRIF). Thus, the aim of this study was to investigate whether the somatostatinergic system is implicated in the mechanism of action of melatonin in the rat hippocampus. One group of rats was injected a single dose of melatonin [25 ,g/kg subcutaneously (s.c.)] or saline containing ethanol (0.5%, s.c.) and killed 5 hr later. Melatonin significantly decreased the SRIF-like immunoreactivity levels and induced a significant decrease in the density of SRIF receptors as well as in the dissociation constant (Kd). SRIF-mediated inhibition of basal and forskolin-stimulated adenylyl cyclase activity was markedly decreased in hippocampal membranes from melatonin-treated rats. The functional activity of Gi proteins was similar in hippocampal membranes from melatonin-treated and control rats. Western blot analyses revealed that melatonin administration did not alter Gi,1 or Gi,2 levels. To determine if the changes observed were related to melatonin-induced activation of central melatonin receptors, a melatonin receptor antagonist, luzindole, was administered prior to melatonin injection. Pretreatment with luzindole (10 mg/kg, s.c.) did not alter the melatonin-induced effects on the above-mentioned parameters and luzindole, alone, had no observable effect. The present results demonstrate that melatonin decreases the activity of the SRIF receptor,effector system in the rat hippocampus, an effect which is apparently not mediated by melatonin receptors. As SRIF exerts an opposite effect to that of melatonin on hippocampal neuronal activity, it is possible that the SRIFergic system could be implicated in the mechanism of action of melatonin in the rat. [source]


First cloning and functional characterization of a melatonin receptor in fish brain: a novel one?

JOURNAL OF PINEAL RESEARCH, Issue 2 2002
Pascaline Gaildrat
Melatonin, a neuroendocrine transducer of photoperiod, influences a number of physiological functions and behaviors through specific seven transmembrane domains receptors. We report here the first full-length cloning and functional characterization of a melatonin receptor (P2.6) in a fish, the pike (Teleost). P2.6 encodes a protein that is ,80% identical to melatonin receptors previously isolated partially in non-mammals and classified as members of the Mel1b subtype; but, it shares only 61% identity with the full-length human Mel1b melatonin receptor (hMT2). Expression of P2.6 results in ligand binding characteristics similar to that described for endogenous melatonin receptors. Selective antagonists of the hMT2 (4-phenyl-2-propionamidotetraline and luzindole) were poor competitors of 2-[125I]iodomelatonin binding to the recombinant receptor. In Chinese hamster ovary cells expressing both the cystic fibrosis transmembrane conductance regulator chloride channel and P2.6 receptor, melatonin counteracted the forskolin induced activation of the channel. The results are best explained by a selective inhibition of the adenylyl cyclase. By reverse transcription-polymerase chain reaction, P2.6 mRNA appeared expressed in the optic tectum and, to lesser extent, in the retina and pituitary. In conclusion, these results, together with those of a phylogenetic analysis, suggest that P2.6 might belong to a distinct subtype group within the vertebrate melatonin receptor family. [source]


Sexual differences and effect of photoperiod on melatonin receptor in avian brain

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 1 2001
Nicoletta Aste
Abstract Several data suggest that melatonin may influence avian reproduction by acting at the level of the hypothalamic-hypophisial-gonadal axis, and/or on neural circuits controlling reproductive behaviours. The action of melatonin is exerted through specific receptors whose distribution and pharmacological properties have been extensively investigated. This review will focus on the distribution, sexual dimorphism, and dependence upon the photoperiod of melatonin binding sites in avian species with a special emphasis on Japanese quail. Melatonin receptors are widely distributed in avian brain. They are mostly present in the visual pathways of all the investigated species and in the song controlling nuclei of oscine birds. Sexual dimorphism of melatonin binding sites (higher density in males than in females) was detected in some telencephalic nuclei of songbirds, in the visual pathways, and in the preoptic area of quail. The last region plays a key role in the activation of male quail copulatory behaviour and it hosts a large population of gonadotropin-releasing hormone-containing neurons. Sexual dimorphism of melatonin-binding sites in the above-mentioned regions suggests a differential role for this hormone in the modulation of visual perception, gonadotropin production, and seasonally activated behaviours in male and female quail. Further studies are necessary to understand interrelationships among photic cues, gonadal steroids, density, and sexually dimorphic distribution of melatonin receptors. Microsc. Res. Tech. 55:37,47, 2001. © 2001 Wiley-Liss, Inc. [source]