Melanosomes

Distribution by Scientific Domains

Kinds of Melanosomes

  • rpe melanosome

  • Terms modified by Melanosomes

  • melanosome transfer
  • melanosome transport

  • Selected Abstracts


    The discovery of the human melanocyte

    PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2006
    Wiete Westerhof
    Summary Around 2200 bc the first written description of a human pigmentation disorder, most likely vitiligo, was recorded, and from that moment the history of research into human pigmentation can be traced. For the following 4000 yr, the origins of human skin colour remained an enigma that was to generate a multitude of misconceptions. Even after European physicians began to dissect and compare dark and light coloured skin to reveal its underlying anatomy, the origins of skin and hair pigmentation were a matter of frequently erroneous speculation. The true source of human pigmentation was only finally revealed with the discovery of the melanocyte in the 19th century. Once tyrosinase was identified to be the key enzyme in pigment formation, attention focused on elucidating the chemical structure of melanin, an enterprise that remains incomplete. The developmental origins of the melanocyte were described from 1940 to 1960, and the concept of the epidermal melanin unit was introduced together with a description of the ultrastructure of the melanosome and melanosome transfer. With these advances came the realization that different skin types exhibit distinct differences at the histological level that relate to varying amounts of eumelanin and pheomelanin produced by the melanocytes. The foundation established over the past 4000 yr is the basis for all current research into this fascinating cell type. [source]


    Localization of Sepiapterin Reductase in Pigment Cells of Oryzias latipes

    PIGMENT CELL & MELANOMA RESEARCH, Issue 5 2003
    Sumiko Negishi
    Body colors of poikilothermal vertebrates are derived from three distinct types of pigment cells, melanophores, erythro/xanthophores and irido/leucophores. It is well known that melanin in melanophores is synthesized by tyrosinase within a specific organelle termed the melanosome. Although sepiapterin reductase (SPR) is an important enzyme involved in metabolizing biopterin and sepiapterin (a conspicuous pteridine as a coloring pigment in xanthophores) the distribution of SPR has not been shown in pigment cells. An antibody raised in rabbits against rat SPR was used to demonstrate the presence of SPR in pigment cells of Oryzias latipes. This study, which used immunohistochemistry with fluorescence or peroxidase/diaminobenzidine as markers, revealed that SPR could be detected readily in xanthophores, but only faintly in melanophores. These results suggest that sepiapterin is metabolized within xanthophores. Moreover, these experiments show that a protein sharing immunological cross-reactivity with rat SPR is located in teleost O. latipes xanthophores, which is significant considering the relationship of pteridine metabolism between poikilothermal vertebrates and mammals. Further progress in investigations of the roles of pteridines in vertebrates will be promoted by using these fish which can be bred in mass rather easily in the laboratory. [source]


    Production of Melanocyte-Specific Antibodies to Human Melanosomal Proteins: Expression Patterns in Normal Human Skin and in Cutaneous Pigmented Lesions

    PIGMENT CELL & MELANOMA RESEARCH, Issue 4 2001
    Victoria Virador
    Multiple factors affect skin pigmentation, including those that regulate melanocyte and/or keratinocyte function. Such factors, particularly those that operate at the level of the melanosome, are relatively well characterized in mice, but the expression and function of structural and enzymatic proteins in melanocytes in human skin are not as well known. Some years ago, we generated peptide-specific antibodies to murine melanosomal proteins that proved to be instrumental in elucidating melanocyte development and differentiation in mice, but cross-reactivity of those antibodies with the corresponding human proteins often was weak or absent. In an effort to characterize the roles of melanosomal proteins in human skin pigmentation, and to understand the underlying mechanism(s) of abnormal skin pigmentation, we have now generated polyclonal antibodies against the human melanocyte-specific markers, tyrosinase, tyrosinase-related protein 1 (TYRP1), Dopachrome tautomerase (DCT) and Pmel17 (SILV, also known as GP100). We used these antibodies to determine the distribution and function of melanosomal proteins in normal human skin (adult and newborn) and in various cutaneous pigmented lesions, such as intradermal nevi, lentigo simplex, solar lentigines and malignant melanomas. We also examined cytokeratin expression in these same samples to assess keratinocyte distribution and function. Immunohistochemical staining reveals distinct patterns of melanocyte distribution and function in normal skin and in various types of cutaneous pigmented lesions. Those differences in the expression patterns of melanocyte markers provide important clues to the roles of melanocytes in normal and in disrupted skin pigmentation. [source]


    The unconventional myosin-VIIa associates with lysosomes

    CYTOSKELETON, Issue 1 2005
    Lily E. Soni
    Abstract Mutations in the myosin-VIIa (MYO7a) gene cause human Usher disease, characterized by hearing impairment and progressive retinal degeneration. In the retina, myosin-VIIa is highly expressed in the retinal pigment epithelium, where it plays a role in the positioning of melanosomes and other digestion organelles. Using a human cultured retinal pigmented epithelia cell line, ARPE-19, as a model system, we have found that a population of myosin-VIIa is associated with cathepsin D- and Rab7-positive lysosomes. Association of myosin-VIIa with lysosomes was Rab7 independent, as dominant negative and dominant active versions of Rab7 did not disrupt myosin-VIIa recruitment to lysosomes. Association of myosin-VIIa with lysosomes was also independent of the actin and microtubule cytoskeleton. Myosin-VIIa copurified with lysosomes on density gradients, and fractionation and extraction experiments suggested that it was tightly associated with the lysosome surface. These studies suggest that myosin-VIIa is a lysosome motor. Cell Motil. Cytoskeleton 62:13,26, 2005. © 2005 Wiley-Liss, Inc. [source]


    Actin-dependent motility of melanosomes from fish retinal pigment epithelial (RPE) cells investigated using in vitro motility assays

    CYTOSKELETON, Issue 2 2004
    E. L. McNeil
    Melanosomes (pigment granules) within retinal pigment epithelial (RPE) cells of fish and amphibians undergo massive migrations in response to light conditions to control light flux to the retina. Previous research has shown that melanosome motility within apical projections of dissociated fish RPE cells requires an intact actin cytoskeleton, but the mechanisms and motors involved in melanosome transport in RPE have not been identified. Two in vitro motility assays, the Nitella assay and the sliding filament assay, were used to characterize actin-dependent motor activity of RPE melanosomes. Melanosomes applied to dissected filets of the Characean alga, Nitella, moved along actin cables at a mean rate of 2 ,m/min, similar to the rate of melanosome motility in dissociated, cultured RPE cells. Path lengths of motile melanosomes ranged from 9 to 37 ,m. Melanosome motility in the sliding filament assay was much more variable, ranging from 0.4,33 ,m/min; 70% of velocities ranged from 1,15 ,m/min. Latex beads coated with skeletal muscle myosin II and added to Nitella filets moved in the same direction as RPE melanosomes, indicating that the motility is barbed-end directed. Immunoblotting using antibodies against myosin VIIa and rab27a revealed that both proteins are enriched on melanosome membranes, suggesting that they could play a role in melanosome transport within apical projections of fish RPE. Cell Motil. Cytoskeleton 58:71,82, 2004. © 2004 Wiley-Liss, Inc. [source]


    Expression of constructs of the neuronal isoform of myosin-Va interferes with the distribution of melanosomes and other vesicles in melanoma cells

    CYTOSKELETON, Issue 2 2002
    Joćo Carlos da Silva Bizario
    Abstract Myosin-Va has been implicated in melanosome translocation, but the exact molecular mechanisms underlying this function are not known. In the dilute, S91 melanoma cells, melanosomes move to the cell periphery but do not accumulate in the tips of dendrites as occurs in wild-type B16 melanocytes; rather, they return and accumulate primarily at the pericentrosomal region in a microtubule-dependent manner. Expression of the full-length neuronal isoform of myosin-Va in S91 cells causes melanosomes to disperse, occupying a cellular area approximately twice that observed in non-transfected cells, suggesting a partial rescue of the dilute phenotype. Overexpression of the full tail domain in S91 cells is not sufficient to induce melanosome dispersion, rather it causes melanosomal clumping. Overexpression of the head and head-neck domains of myosin-Va in B16 cells does not alter the melanosome distribution. However, overexpression of the full tail domain in these cells induces melanosome aggregation and the appearance of tail-associated, aggregated particles or vesicular structures that exhibit variable degrees of staining for melanosomal and Golgi ,-COP markers, as well as colocalization with the endogenous myosin-Va. Altogether, the present data suggest that myosin-Va plays a role in regulating the direction of microtubule-dependent melanosome translocation, in addition to promoting the capture of melanosomes at the cell periphery as suggested by previous studies. These studies also reinforce the notion that myosin-V has a broader function in melanocytes by acting on vesicular targeting or intracellular protein trafficking. Cell Motil. Cytoskeleton 51:57,75, 2002. © 2002 Wiley-Liss, Inc. [source]


    Depigmentation Therapy with Q-Switched Ruby Laser After Tanning in Vitiligo Universalis

    DERMATOLOGIC SURGERY, Issue 11 2001
    Young-Jo Kim MD
    Background. In vitiligo universalis, repigmentation therapy is seldom effective. Besides, bleaching cream which is often used in depigmentation therapy may lead to several serious complications. Objective. Q-switched (QS) ruby laser can destroy melanosomes in melanocytes and keratinocytes by selective photothermolysis. Methods. We have attempted to destroy melanocytes by using the QS ruby laser after tanning in a patient with extensive vitiligo. Results. The patient had excellent results with no evidence of repigmentation after 1 year. Conclusion. Depigmentation therapy with QS ruby laser after tanning is an effective and safe way of removing remnants of normal pigmentation in patients with vitiligo universalis. [source]


    Neurocutaneous syndrome with mental delay, autism, blockage in intracellular vescicular trafficking and melanosome defects

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 8 2006
    S. Buoni
    We evaluated a 11-year-old male patient with mental delay, autism and brownish and whitish skin spots. The former resembled those of neurofibromatosis, the latter those of tuberous sclerosis. The patient received a complete clinical work-up to exclude neurofibromatosis, tuberous sclerosis, or any other known neurocutaneous disease, with biochemistry, chromosome analysis and analysis of skin specimens. Being all the other tests not significant, two main ultrastructural defects were observed. The first was a blockage in intracellular vescicular trafficking with sparing of the mitochondria; the second an aberrant presence of melanosomes in vacuoles of several cell lines and abnormal transfer of these organelles to keratinocytes. This patient presented with a unique clinical picture distinct from neurofibromatosis or tuberous sclerosis or any other known neurocutaneous disease. The ultrastructural abnormalities suggested a defect in cell trafficking involving several cell lines and compartments. [source]


    Effective inhibition of melanosome transfer to keratinocytes by lectins and niacinamide is reversible

    EXPERIMENTAL DERMATOLOGY, Issue 7 2005
    Amanda Greatens
    Abstract:, Skin pigmentation results in part from the transfer of melanized melanosomes synthesized by melanocytes to neighboring keratinocytes. Plasma membrane lectins and their glycoconjugates expressed by these epidermal cells are critical molecules involved in this transfer process. In addition, the derivative of vitamin B3, niacinamide, can inhibit melanosome transfer and induce skin lightening. We investigated the effects of these molecules on the viability of melanocytes and keratinocytes and on the reversibility of melanosome-transfer inhibition induced by these agents using an in vitro melanocyte,keratinocyte coculture model system. While lectins and neoglycoproteins could induce apoptosis in a dose-dependent manner to melanocytes or keratinocytes in monoculture, similar dosages of the lectins, as opposed to neoglycoproteins, did not induce apoptosis to either cell type when treated in coculture. The dosages of lectins and niacinamide not affecting cell viability produced an inhibitory effect on melanosome transfer, when used either alone or together in cocultures of melanocytes,keratinocytes. Cocultures treated with lectins or niacinamide resumed normal melanosome transfer in 3 days after removal of the inhibitor, while cocultures treated with a combination of lectins and niacinamide demonstrated a lag in this recovery. Subsequently, we assessed the effect of niacinamide on facial hyperpigmented spots using a vehicle-controlled, split-faced design human clinical trial. Topical application of niacinamide resulted in a dose-dependent and reversible reduction in hyperpigmented lesions. These results suggest that lectins and niacinamide at concentrations that do not affect cell viability are reversible inhibitors of melanosome transfer. [source]


    Progressive macular hypomelanosis in Singapore: a clinico-pathological study

    INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 6 2006
    Sujith Prasad W. Kumarasinghe MBBS
    Introduction, Progressive macular hypomelanosis (PMH), a condition of uncertain etiology, is characterized by asymptomatic hypopigmented macules predominantly located on the trunk. To date, there are no reports from South-East Asia concerning this condition. We sought to record the clinical features of PMH in Asian patients, identify etiologic factors, and study the structural and ultrastructural features of melanocytes in this disorder. Methods, Patients who presented to the National Skin Center with acquired, hypopigmented macules on the trunk, without a history of inflammation or infection, were recruited. Erythrocyte sedimentation rate (ESR), complete blood count, fasting blood glucose, liver function tests, skin scrapings for fungi, and skin biopsy specimens (from lesional and normal skin) were obtained. Biopsies were stained with hematoxylin and eosin (H&E), Fontana Masson, an immunohistochemical panel for identification of melanocyte differentiation antibodies (HMB 45, Melan A, and S100) and CD 68. Electron microscopy (EM) was also performed. The patients were evaluated every 3 months. Results, During a 9 month period, eight patients (all Chinese) presented with hypopigmented, ill-defined, confluent macules involving the lower aspect of the trunk. There were four men and four women, and the mean age was 25.9 years (range 19,45 years). Skin scrapings were negative for fungi and laboratory tests were normal. Microscopic evaluation of skin biopsy speciments showed reduced pigmentation of lesional as compared with normal appearing skin, but H&E-stained sections revealed only minimal histologic differences between lesional and normal skin. EM demonstrated a statistically significant (P = 0.047, Wilcoxon Signed Rank Test, Wilcoxon 95% CI 0.02,0.62) higher ratio of stage IV and late stage III (dark) melanosomes in normal vs. lesional skin. Conclusions, PMH may occur among young adults in Singapore. Its etiology is uncertain. The melanin content of lesional skin appears to be less than that in normal sites. EM shows a higher ratio of immature melanosomes in lesional vs. normal skin. [source]


    Melanocytic nevi are associated with neurofibromas in neurofibromatosis, type I, but not sporadic neurofibromas.

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 8 2005
    A study of 226 cases
    Background:, Neurofibromatosis, type 1, is associated with cutaneous melanin pigmentation, but an association with ordinary melanocytic nevi has not been described. Methods:, This retrospective case-control study was designed to see if neurofibromas in patients with neurofibromatosis, type 1 (NF-1) differ from sporadic neurofibromas (SN) in their incidence of associated melanocytic nevi and other histologic features. Slides from 114 NF-1 were compared with 112 SN and 300 intradermal melanocytic nevi (IDN). Results:, Small lentiginous melanocytic nevi were identified over 13 NF-1 (11%) but no SN (P = 0.0002). Compared with other NF-1, NF-1 with nevi were more frequently associated with melanocytic hyperplasia, giant melanosomes and diffuse neurofibroma (P < 0.03). Compared with SN, NF-1 were also more frequently associated with melanocytic hyperplasia, lentigo simplex-like changes, diffuse neurofibroma and plexiform neurofibroma (P < 0.001). Sebaceous hyperplasia (14%), dermal elastosis (9%), lipomatous change (8%), epithelial cysts (4%) and keratin granulomas or folliculitis (3%) were not significantly different in prevalence between NF-1, SN and the control group of IDN. Conclusions:, This study suggests that there is a difference in the potential for melanocytic proliferation in NF-1 compared with SN. NF-1, SN and IDN are associated with a similar range of incidental histologic changes. [source]


    A physiological interpretation of pattern changes in a flatfish

    JOURNAL OF FISH BIOLOGY, Issue 3 2008
    D. Burton
    The pattern-related capacity for the dispersion of previously aggregated melanosomes in low concentrations (3 × 10,6 to 10,8 M) of noradrenaline in vitro was observed in melanophores from winter flounder Pseudopleuronectes americanus. With 10,8 M noradrenaline, dispersion was completed more rapidly than in controls using the incubation vehicle alone. Melanophores from white-spot, dark-band and general background components of the integumentary pattern displayed different ,transition ranges' between melanosome aggregation and dispersion in higher and lower concentrations of noradrenaline. Within each ,transition range' individual noradrenaline concentration decrements could result in highly variable degrees of melanosome dispersion. The relative breadth of the noradrenaline ,transition range' concentrations could be represented as dark bands > general background > white spots. The threshold noradrenaline concentration for dispersion was highest for the dark bands. It is concluded that these differences represent variations in the transition from melanophore ,-adrenoceptor-mediated pigment aggregation to ,-adrenoceptor-mediated dispersion between localized areas of the skin. Such variations in ,transition range' will have an important role in the expression of flatfish patterns and in their changes in colour and texture. [source]


    Melanophores: A model system for neuronal transport and exocytosis?

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2007
    Sara Aspengren
    Abstract Black pigment cells, melanophores, from lower vertebrates are specialized in bidirectional and coordinated translocation of pigment granules, melanosomes, in the cytoplasm. Melanophores develop from the neuronal crest and are most abundant in the dermal and epidermal layers of the skin, where the intracellular distribution of the pigment significantly influences the color of the animal. The transport of pigment is dependent on an intact cytoskeleton and motor proteins associated with cytoskeletal components. The easily cultured melanophores have proved to be excellent models for organelle transport because the intracellular movements of pigment can be visualized via light microscopy, and the granules move in response to defined chemical signals. The ease of achieving a combination of morphological and functional transport studies is the advantage of the melanophore system, and studies on pigment cells have revealed new components of the transport machinery, including molecular motors, their adapters, and transfer of vesicles to other cells. Many cellular components are transported with a combination of the actin- and microtubule-based transport systems, and, since all eukaryotic organisms rely on functional intracellular transport and an intact cytoskeleton, studies on melanophores are important for many aspects of cell biology, including axonal transport. In this review, we present an overview of the research on the pigment transport system and the potential use of pigment cells as a model system. © 2006 Wiley-Liss, Inc. [source]


    Malignant peripheral nerve sheath tumor of the uterine cervix expressing both S-100 protein and HMB-45

    JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH (ELECTRONIC), Issue 6 2009
    Na Rae Kim
    Abstract A 50-year-old woman presented with a large cervical polypoid mass. Grossly, the mass occupied a substantial proportion of the cervical canal, measuring 6 cm. Histologically, the mass showed a spindle cell malignancy arranged in large fascicles that penetrated deeply into the fibromuscular wall of the cervix. The spindle cells were immunoreactive for both S-100 protein and HMB-45 antigen, but were negative for Melan-A. Electron microscopy showed that cytoplasmic processes of the spindle to oval tumor cells contained microtubules and were lined by basal lamina and abundant intercellular collagen spacing with no melanosomes in any stage. As far as we are aware, this is the ninth reported case of cervical malignant peripheral nerve sheath tumor (MPNST), and the second reported case of MPNST expressing HMB-45 antigen. [source]


    Qualitative disorders of platelets and megakaryocytes

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 8 2005
    A. T. NURDEN
    Summary., Qualitative disorders of platelet function and production form a large group of rare diseases which cover a multitude of genetic defects that by and large have as a common symptom, excessive mucocutaneous bleeding. Glanzmann thrombasthenia, is enabling us to learn much about the pathophysiology of integrins and of how ,IIb,3 functions. Bernard,Soulier syndrome, an example of macrothrombocytopenia, combines the production of large platelets with a deficit or non-functioning of the major adhesion receptor of platelets, the GPIb-IX-V complex. Amino acid substitutions in GPIb,, may lead to up-regulation and spontaneous binding of von Willebrand factor as in Platelet-type von Willebrand disease. In disorders with defects in the MYH9 gene, macrothrombocytopenias are linked to modifications in kidney, eye or ear, whereas other inherited thrombocytopenias variously link a low platelet count with a propensity to leukemia, skeletal defects, learning impairment, and abnormal red cells. Defects of secretion from platelets include an abnormal , -granule formation as in the gray platelet syndrome (with marrow myelofibrosis), and of organelle biogenesis in the Hermansky,Pudlak and Chediak,Higashi syndromes where platelet dense body defects are linked to abnormalities of other lysosomal-like organelles including melanosomes. Finally, defects involving surface receptors (P2Y12, TP,) for activating stimuli, of proteins essential for signaling pathways (including Wiskott,Aldrich syndrome), and of platelet-derived procoagulant activity (Scott syndrome) show how studies on platelet disorders are helping unravel the pathways of primary hemostasis. [source]


    Melanocytic medulloblastoma with ganglioneurocytomatous differentiation: A case report

    NEUROPATHOLOGY, Issue 1 2009
    Kanako C. Kubota
    Melanotic or melanocytic medulloblastoma is a rare variant of medulloblastoma, especially when the tumor shows advanced neuronal differentiation. We report a case of this tumor, which developed in the cerebellar vermis in an 8-year-old girl. Initial biopsy specimens were identified as classical medulloblastoma with a high MIB1 index. Surgical removal of the tumor was performed after chemo-radiotherapy, and black pigments were noticed on the tumor surface. Histologically, the tumor was composed of classical medulloblastoma with the presence of pigmented epithelial cells forming tubules and clusters. Immunohistochemically, the pigmented tumor cells were positive for S100 protein, HMB45, and MART1, indicating that the pigments were derived from melanosomes, and these features were compatible with melanocytic medulloblastoma. Interestingly, some of the non-pigmented or amelanotic tumor cells were also positive for HMB45 and S100 protein. Although the tumor showed an unusual cell combination, it was distinguished from atypical teratoid/rhabdoid tumor (AT/RT) by nuclear expression of INI1/BAF45 protein. The tumor also possessed ganglion-like cells within the neuropil matrix, which resembled small mature ganglion cells, and was consequently designated as ganglioneurocytoma. The melanotic medulloblastoma and part of the ganglioneurocytomatous area were fused with each other. Hence, the present case provides new information indicating that melanocytic medulloblastoma differs from AT/RT, and that it can exhibit advanced neuronal differentiation. In addition, reduction of the tumor MIB1 index was observed after chemo-radiotherapy. [source]


    Surface Elastic Properties of Human Retinal Pigment Epithelium Melanosomes,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2008
    Senli Guo
    Atomic force microscope (AFM) imaging and nanoindentation measurements in water were used to probe the mechanical properties of retinal pigment epithelium melanosomes isolated from 14-year-old and 76-year-old donors. Topographic imaging reveals surface roughness similar to previous measurements on dry melanosomes. Force-indentation measurements show different types of responses that were catalogued into four different categories. In these measurements no permanent surface damage of melanosomes was observed as revealed by imaging before and after indentation measurements. The indentation measurements that exhibited nearly elastic responses were used to determine the Young's modulus of melanosomes. The average Young's modulus values are similar for 14-year-old and 76-year-old melanosomes with a somewhat narrower distribution for the 14-year-old sample. These elastic modulus values are considerably higher than the modulus of organelles with cytoplasm (<1 MPa) and approaching values of the modulus of protein crystals (,100 MPa) indicating rather high packing density of biologic material in melanosomes. The width of the Young's modulus distributions is considerable spanning from few megapascals to few tens of megapascals indicating large heterogeneity in the structure. A fraction of the force curves cannot be described by the homogeneous elastic sample model; these force curves are consistent with ,10 nm structural heterogeneity in melanosomes. The approach-withdraw hysteresis indicates a significant viscoelasticity, particularly in the samples from the 14-year-old sample. Adhesion of the AFM probe was detected on ,3% and ,20% of the surface of 14-year-old and 76-year-old samples, respectively. In light of previous studies on these same melanosomes using photoelectron emission microscopy, this adhesion is attributed to the presence of lipofuscin on the surface of the melanosomes. This suggestion indicates that part of the difference in photochemical properties between the old and young melanosomes originates from surface lipofuscin. [source]


    Photobleaching of Melanosomes from Retinal Pigment Epithelium: I. Effects on Protein Oxidation

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
    Janice M. Burke
    ABSTRACT Melanin in the long-lived melanosomes of the retinal pigment epithelium (RPE) may undergo photobleaching with aging, which appears to diminish the antioxidant function of melanin and could make photobleached melanosomes less efficient in protecting biomolecules from oxidative modification. Here we analyzed whether photobleaching of melanosomes affects their ability to modify the oxidation state of nearby protein. As conventional methods developed to study soluble antioxidants are not well suited for analysis of granules such as melanosomes, we developed a new analytic method to focus on particle surfaces that involves experimentally coating granules with the cytoskeletal protein ,-actin to serve as a reporter for local protein oxidation. Isolated porcine RPE melanosomes were photobleached with visible light to simulate aging, then photobleached melanosomes, untreated melanosomes and control particles (black latex beads) were actin coated and illuminated in a photosensitized cell free system. Protein was re-stripped from particles and analyzed for carbonylation by Western blotting. Quantitative densitometry showed no reproducible differences for protein associated with untreated melanosomes when compared with control particles. Melanin has both anti- and pro-oxidant functions when light irradiated, but neither of these functions predominated in the protein oxidation assay when untreated melanosomes were used. However, protein extracted from photobleached melanosomes showed markedly increased carbonylation, both of associated actin and of endogenous melanosomal protein(s), and the effect increased with extent of granule photobleaching. Photobleaching of RPE melanosomes therefore changes the oxidation state of protein endogenous to the organelle and reduces the ability of the granule to modify the oxidation of exogenous protein near the particle surface. The results support the growing body of evidence that photobleaching of RPE melanosomes, which is believed to occur with aging, changes the physicochemical properties of the organelle and reduces the likelihood that the granules perform an antioxidant function. [source]


    Photobleaching of Melanosomes from Retinal Pigment Epithelium: II.

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
    Effects on the Response of Living Cells to Photic Stress
    Melanosomes of the retinal pigment epithelium (RPE) are long lived organelles that may undergo photobleaching with aging, which can diminish the antioxidant efficiency of melanin. Here, isolated porcine RPE melanosomes were experimentally photobleached with visible light to simulate aging and compared with untreated granules or control particles (black latex beads) for their effects on the survival of photically stressed ARPE-19 cultures. Particles were delivered to cultures for uptake by phagocytosis then cells were exposed to violet light and analyzed by a new live cell imaging method to identify the time of apoptotic blebbing as a dynamic measure of reduced cell survival. Results indicated that untreated melanosomes did not decrease photic injury to ARPE-19 cells when compared with cells lacking particles or with cells containing control particles, as might be expected if melanin performed an antioxidant function. Instead cells with untreated melanosomes showed reduced survival indicated by an earlier onset of blebbing and a lower fraction of surviving cells after photic stress. Cell survival was reduced even further in stressed cells containing melanosomes that were photobleached, and survival decreased with increasing photobleaching time. Photobleaching of RPE melanosomes therefore makes cells containing them more sensitive to light-induced cytotoxicity. This observation raises the possibility that aged melanosomes increase RPE cell photic stress in situ, perhaps contributing to reduced tissue function and to degeneration of the adjacent retina that the RPE supports. How melanosomes (photobleached or not) interact with their local subcellular environment to modify RPE cell survival is poorly understood and is likely determined by the physicochemical state of the granule and its constituent melanin. The live cell imaging method introduced here, which permitted detection of a graded effect of photobleaching, provides a sensitive bioassay for probing the effects of melanosome modifications. [source]


    Barrier requirements as the evolutionary "driver" of epidermal pigmentation in humans

    AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2010
    Peter M. Elias
    Current explanations for the development of epidermal pigmentation during human evolution are not tenable as stand-alone hypotheses. Accordingly, we assessed instead whether xeric- and UV-B-induced stress to the epidermal permeability barrier, critical to survival in a terrestrial environment, could have "driven" the development of epidermal pigmentation. (1) Megadroughts prevailed in central Africa when hominids expanded into open savannahs [,1.5,0.8 million years ago], resulting in sustained exposure to both extreme aridity and erythemogenic UV-B, correlating with genetic evidence that pigment developed ,1.2 million years ago. (2) Pigmented skin is endowed with enhanced permeability barrier function, stratum corneum integrity/cohesion, and a reduced susceptibility to infections. The enhanced function of pigmented skin can be attributed to the lower pH of the outer epidermis, likely due to the persistence of (more-acidic) melanosomes into the outer epidermis, as well as the conservation of genes associated with eumelanin synthesis and melanosome acidification (e.g., TYR, OCA2 [p protein], SLC24A5, SLC45A2, MATP) in pigmented populations. Five keratinocyte-derived signals (stem cell factor,KIT; FOXn1,FGF2; IL-1,, NGF, and p53) are potential candidates to have stimulated the sequential development of epidermal pigmentation in response to stress to the barrier. We summarize evidence here that epidermal interfollicular pigmentation in early hominids likely evolved in response to stress to the permeability barrier. Am. J. Hum. Biol., 2010. © 2010 Wiley-Liss, Inc. [source]


    Comparison of Structural and Chemical Properties of Black and Red Human Hair Melanosomes,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2005
    Yan Liu
    ABSTRACT Melanosomes in black and red human hair are isolated and characterized by various chemical and physical techniques. Different yields of 4-amino-hydroxyphenolanaline by HI hydrolysis (a marker for pheomelanin) and pyrrole-2,3,5-tricarboxylic acid by KMnO4/H+ oxidation (a marker for eumelanin) indicate that the melanosomes in black hair are eumelanosomes, whereas those in red hair are mainly pheomelanosomes. Atomic force microscopy reveals that eumelanosomes and pheomelanosomes have ellipsoidal and spherical shapes, respectively. Eumelanosomes maintain structural integrity upon extraction from the keratin matrix, whereas pheomelanosomes tend to fall apart. The black-hair eumelanosomes have an average of 14.6 ± 0.5% amino acids content, which is attributed to the internal proteins entrapped in the melanosomes granules. The red-hair melanosomes contain more than 44% of amino acid content even after extensive proteolytic digestion. This high content of amino acids and the poorly reserved integrity of red-hair melanosomes suggest that some proteins are possibly covalently bonded with the melanin constituents in addition to those that are entrapped inside the melanin species. Soluene solubilization assay indicates the absorbance of melanin per gram of sample, adjusted for the amino acid content, is a factor of 2.9 greater for the black-hair melanosomes than the red-hair melanosomes. Metal analysis reveals significant amounts of diverse heavy metal ions bound to the two types of melanosomes. The amount of Cu(II) and Zn(II) are similar but Fe(III) content is four times higher in the red-hair melanosomes. 13C solid-state nuclear magnetic resonance spectra and infrared spectra are presented and are shown to be powerful techniques for discerning differences in the amino acid contents, the 5,6-dihydroxyindole-2-carboxylic acid:5,6-dihydroxyindole ratio, and the degree of cross-linking in the pigment. Excellent agreement is observed between these spectral results and the chemical degradation data. [source]


    Induction of Primary Cutaneous Melanomas in C3H Mice by Combined Treatment with Ultraviolet Radiation, Ethanol and Aloe Emodin ,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2000
    Faith M. Strickland
    ABSTRACT The role of ultraviolet (UV) radiation in the induction of nonmelanoma skin cancer is widely accepted, although its precise contribution to the development of primary cutaneous melanoma skin cancer requires further definition. We found that painting aloe emodin, a trihydroxyanthraquinone from Aloe barbadensis, in ethyl alcohol vehicle on the skin of mice in conjunction with exposure to UVB (280,320 nm) radiation results in the development of melanin-containing skin tumors. C3H/HeN mice were treated thrice weekly with aloe emodin in a 25% ethanol in water vehicle and exposed to 15 kJ/m2 UV radiation. Neither ethanol vehicle nor aloe emodin alone induced skin tumors in the absence of UV radiation. In two separate experiments, 20,30% of the mice treated with a combination of UV radiation and ethanol vehicle and 50,67% of the UV-irradiated animals given aloe emodin in ethanol vehicle developed primary cutaneous melanin-containing tumors. The diagnosis of melanoma was established using Fontana silver stain for melanin; these tumors were negative for vimentin and keratin. Melanin-containing melanosomes were observed by transmission electron microscopy in tumors diagnosed as melanomas. Although the mechanism of carcinogenesis in these mice is currently unknown, our findings have led to the development of the first facile murine model for the induction of primary melanoma. This model has the potential to clarify the role of UV radiation in the etiology of malignant melanoma. [source]


    Down-Regulated PAR-2 is Associated in Part with Interrupted Melanosome Transfer in Pigmented Basal Cell Epithelioma

    PIGMENT CELL & MELANOMA RESEARCH, Issue 4 2004
    Kazuko Sakuraba
    In pigmented basal cell epithelioma (BCE), there seems to be an abnormal transfer of melanized melanosomes from proliferating melanocytes to basaloid tumor cells. In this study, the interruption of that melanosome transfer was studied with special respect to the altered function of a phagocytic receptor, protease-activated receptor (PAR)-2 in the basaloid tumor cells. We used electron microscopy to clarify the disrupted transfer at the ultrastructural level and then performed immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to examine the regulation of a phagocytic receptor, PAR-2, expressed on basaloid tumor cells. Electron microscopic analysis revealed that basaloid tumor cells of pigmented BCE have a significantly lower population of melanosomes (,16.4%) than do normal keratinocytes located in the perilesional normal epidermis (,91.0%). In contrast, in pigmented seborrheic keratosis (SK), a similarly pigmented epidermal tumor, the distribution of melanin granules does not differ between the lesional (,93.9%) and the perilesional normal epidermis (,92.2 %), indicating that interrupted melanosome transfer occurs in BCE but not in all pigmented epithelial tumors. RT-PCR analysis demonstrated that the expression of PAR-2 mRNA transcripts in basaloid cells is significantly decreased in pigmented BCE compared with the perilesional normal epidermis. In contrast, in pigmented SK, where melanosome transfer to basaloid tumor cells is not interrupted, the expression of PAR-2 mRNA transcripts is comparable between the basaloid tumor cells and the perilesional normal epidermis. Immunohistochemistry demonstrated that basaloid cells in pigmented BCE have less immunostaining for PAR-2 than do keratinocytes in the perilesional normal epidermis whereas in pigmented SK, there is no difference in immunostaining for PAR-2 between the basaloid tumor and the perilesional normal epidermis. These findings suggest that the decreased expression of PAR-2 in the basaloid cells is associated in part with the observed interruption of melanosome transfer in pigmented BCE. [source]


    Morphology of Cultured Human Epidermal Melanocytes Observed by Atomic Force Microscopy

    PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2004
    Ru-zhi Zhang
    The objective of this study was to image the surface structure of cultured human epidermal melanocytes using atomic force microscopy (AFM). Epidermis obtained from human foreskins was treated with 0.5% dispase. Cell suspensions of the epidermis were prepared and seeded in six-well plates, in which sheets of mica had been placed. Samples for AFM were fixed on mica and scanning AFM images were captured by contacting and tapping modes operated under normal atmospheric pressure and temperature. Human epidermal melanocytes exhibited rounded, oval, triangular or quadrangular perikarya from which eight to 10 thick dendrites arose. These dendrites first bifurcated near the soma and then divided profusely into daughter branches, which spread out in all directions. We observed string-like long thin projections, growth cones and shorter thicker projections, which arose from the dendritic shafts, in which groups of melanosomes were arrayed. In addition to such structures, the most striking feature was the presence of filopodia arising from the melanocyte dendrite tips and the melanocyte cell body, many of which contained melanosomes. The termini of dendrites formed unbranched terminal protrusions (approximately 1500,2000 nm wide) consisting of two to three melanosomes wrapped in an arc, with their filopodia extending outwards. The tips of these structures also appeared to be squeezed and finally pinched off by the melanocyte to form a pouch filled with numerous melanosomes. We conclude that secondary and tertiary branches and subordinate branches might take part in transferring melanosomes into keratinocytes in addition to the transfer through the tips of the dendritic shafts. The melanin granules were expelled by exocytosis. [source]


    The Role of Melanocortin-1 Receptor Polymorphism in Skin Cancer Risk Phenotypes

    PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2003
    Richard A. Sturm
    We have examined melanocortin-1 receptor (MC1R) variant allele frequencies in the general population and in a collection of adolescent dizygotic and monozygotic twins to determine statistical associations of pigmentation phenotypes with increased skin cancer risk. This included hair and skin color, freckling, mole count and sun exposed skin reflectance. Nine variants were studied and designated as either strong R (OR = 63; 95% CI 32,140) or weak r (OR = 5; 95% CI 3,11) red hair alleles. Penetrance of each MC1R variant allele was consistent with an allelic model where effects were multiplicative for red hair but additive for skin reflectance. To assess the interaction of the brown eye color gene BEY2/OCA2 on the phenotypic effects of variant MC1R alleles we imputed OCA2 genotype in the twin collection. A modifying effect of OCA2 on MC1R variant alleles was seen on constitutive skin color, freckling and mole count. In order to study the individual effects of these variants on pigmentation phenotype we have established a series of human primary melanocyte strains genotyped for the MC1R receptor. These include strains which are MC1R wild-type consensus, variant heterozygotes, and homozygotes for strong R alleles Arg151Cys and Arg160Trp. Ultrastructural analysis demonstrated that only consensus strains contained stage III and IV melanosomes in their terminal dendrites whereas Arg151Cys and Arg160Trp homozygous strains contained only immature stage I and II melanosomes. Such genetic association studies combined with the functional analysis of MC1R variant alleles in melanocytic cells should provide a link in understanding the association between pigmentary phototypes and skin cancer risk. [source]


    Melanin as a Target for Melanoma Chemotherapy: Pro-oxidant Effect of Oxygen and Metals on Melanoma Viability

    PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2003
    Patrick J. Farmer
    Melanoma cells have a poor ability to mediate oxidative stress, which may be attributed to constitutive abnormalities in their melanosomes. We hypothesize that disorganization of the melanosomes will allow chemical targeting of the melanin within. Chemical studies show that under oxidative conditions, synthetic melanins demonstrate increased metal affinity and a susceptibility to redox cycling with oxygen to form reactive oxygen species. The electron paramagnetic resonance (EPR)-active 5,5,-dimethyl-pyrollidine N-oxide spin adduct was used to show that binding of divalent Zn or Cu to melanin induces a pro-oxidant response under oxygen, generating superoxide and hydroxyl radicals. A similar pro-oxidant behaviour is seen in melanoma cell lines under external peroxide stress. Melanoma cultures grown under 95% O2/5% CO2 atmospheres show markedly reduced viability as compared with normal melanocytes. Cu- and Zn-dithiocarbamate complexes, which induce passive uptake of the metal ions into cells, show significant antimelanoma activity. The antimelanoma effect of metal- and oxygen-induced stress appears additive rather than synergistic; both treatments are shown to be significantly less toxic to melanocytes. [source]


    Co-Culture of Mouse Epidermal Cells for Studies of Pigmentation

    PIGMENT CELL & MELANOMA RESEARCH, Issue 2 2003
    Tae-Jin Yoon
    Interactions between melanocytes and keratinocytes in the skin suggest bi-directional interchanges between these two cell types. Thus, melanocytes cultured alone may not accurately reflect the physiology of the skin and the effects of physiological regulators in vivo, because they do not consider possible interactions with keratinocytes. As more and more pigment genes are identified and cloned, the characterization of their functions becomes more of a challenge, particularly with respect to their roles in the processing and transport of melanosomes and their transfer to keratinocytes. Immortalized melanocytes mutant at these loci are now being routinely generated from mice, but interestingly, successful co-culture of murine melanocytes and keratinocytes is very difficult compared with their human counterparts. Thus, we have now optimized co-culture conditions for murine melanocytes and keratinocytes so that pigmentation and the effects of specific mutations can be studied in a more physiologically relevant context. [source]


    Depigmenting Action of Phenylhydroquinone, an o -Phenylphenol Metabolite, on the Skin of JY-4 Black Guinea-Pigs

    PIGMENT CELL & MELANOMA RESEARCH, Issue 6 2002
    Kuniaki Tayama
    The effects of o -phenylphenol (OPP) and its metabolite, phenylhydroquinone (PHQ) on the skin of JY-4 black guinea-pigs were studied. Topical application of 1 or 5% PHQ on the black skin of the back caused marked depigmentation and hypopigmentation of the skin after 5 weeks, whereas OPP applied at the same concentrations had little effect. Depigmented skin had an increased L* (lightness) value in the CIE-L*a*b* color system. This corresponded with a decreased number of melanocytes and melanosomes in the melanocytes and keratinocytes, the disruption of melanosomes in the melanocytes, and destruction of the membranous organelles of the melanocytes. These morphological and numerical changes in epidermal melanocytes indicate that selective melanocyte toxicity occurred. Furthermore, application of PHQ to the skin of white guinea-pigs caused skin irritation, as shown by a colorimetric increase in a* value (redness) and by histological observation of inflammation. This study confirmed that OPP, which is a reported depigmenter, has little depigmenting action, while its metabolite, PHQ, is a potent depigmenter preferentially affecting melanocytes. [source]


    Rac and Rho: The Story Behind Melanocyte Dendrite Formation

    PIGMENT CELL & MELANOMA RESEARCH, Issue 5 2002
    Glynis Scott
    Melanocyte dendrites are hormonally responsive actin and microtubule containing structures whose primary purpose is to transport melanosomes to the dendrite tip. Melanocyte dendrites have been an area of intense interest for melanocyte biologists, but it was not until recently that we began to understand the mechanisms underlying their formation. In contrast with melanogenesis, for which numerous mutations in pigment producing genes and mouse models have been identified, a genetic defect resulting in impaired dendrite formation has not been found. Therefore, much of the insight into melanocyte dendrites has come from electron microscopy or in vitro culture systems of normal human and murine melanocytes as well as melanoma cell lines. The growth factors that regulate the formation of melanocyte dendrites have been thoroughly studied and it is clear that multiple signalling systems are able to stimulate, and in some cases inhibit, dendrite formation. Recent data points to the Rho family of small guanosine triphosphate (GTP)-binding proteins as master regulators of dendrite formation, particularly Rac and Rho. In this review I will summarize the progress scientists have made in understanding the structure, hormonal regulation and molecular mediators of melanocyte dendrite formation. [source]


    Inhibition of Melanosome Transfer from Melanocytes to Keratinocytes by Lectins and Neoglycoproteins in an In Vitro Model System

    PIGMENT CELL & MELANOMA RESEARCH, Issue 3 2001
    Ljiljana Minwalla
    We propose that some of the critical molecules involved in the transfer of melanosomes from melanocytes to keratinocytes include plasma membrane lectins and their glycoconjugates. To investigate this mechanism, co-cultures of human melanocytes and keratinocytes derived from neonatal foreskins were established. The process of melanosome transfer was assessed by two experimental procedures. The first involved labeling melanocyte cultures with the fluorochrome CFDA. Labeled melanocytes were subsequently co-cultured with keratinocytes, and the transfer of fluorochrome assessed visually by confocal microscopy and quantitatively by flow cytometry. The second investigative approach involved co-culturing melanocytes with keratinocytes, and processing the co-cultures after 3 days for electron microscopy to quantitate the numbers of melanosomes in keratinocytes. Results from these experimental approaches indicate significant transfer of dye or melanosomes from melanocytes to keratinocytes that increased with time of co-culturing. Using these model systems, we subsequently tested a battery of lectins and neoglycoproteins for their effect in melanosome transfer. Addition of these selected molecules to co-cultures inhibited transfer of fluorochrome by approximately 15,44% as assessed by flow cytometry, and of melanosomes by 67,93% as assessed by electron microscopy. Therefore, our results suggest the roles of selected lectins and glycoproteins in melanosome transfer to keratinocytes in the skin. [source]