Melanoma Model (melanoma + model)

Distribution by Scientific Domains


Selected Abstracts


Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model

EXPERIMENTAL DERMATOLOGY, Issue 11 2006
Lina Elzaouk
Abstract:, Mesenchymal stem cells (MSCs) represent a new tool for delivery of therapeutic agents to tumor cells. In this study, we have evaluated the anti-tumor activity of human MSCs stably transduced with a retroviral vector expressing the cytokine interleukin-12 (IL-12) in a mouse melanoma model. Application of MSC(IL-12) but not control MSCs strongly reduced the formation of lung metastases of B16F10 melanoma cells. The activity of the MSC(IL-12) cells was dependent on the presence of natural killer (NK) cells in this experimental setting. Further, MSC(IL-12) cells elicited a pronounced retardation of tumor growth and led to prolonged survival when injected into established subcutaneous melanoma in a therapeutic regimen. The therapeutic effect of the MSC(IL-12) was in part mediated by CD8+ T cells, while NK cells and CD4+ T cells appeared to play a minor role. The anti-tumor effect of MSC(IL-12) cells was of similar efficiency as observed for application of naked plasmid DNA encoding IL-12. The presented data demonstrate that these two different strategies can induce a similar therapeutic anti-tumor efficacy in the mouse melanoma tumor model. [source]


The sodium pump ,1 sub-unit: a disease progression,related target for metastatic melanoma treatment

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Véronique Mathieu
Abstract Melanomas remain associated with dismal prognosis because they are naturally resistant to apoptosis and they markedly metastasize. Up-regulated expression of sodium pump , sub-units has previously been demonstrated when comparing metastatic to non-metastatic melanomas. Our previous data revealed that impairing sodium pump ,1 activity by means of selective ligands, that are cardiotonic steroids, markedly impairs cell migration and kills apoptosis-resistant cancer cells. The objective of this study was to determine the expression levels of sodium pump , sub-units in melanoma clinical samples and cell lines and also to characterize the role of ,1 sub-units in melanoma cell biology. Quantitative RT-PCR, Western blotting and immunohistochemistry were used to determine the expression levels of sodium pump , sub-units. In vitro cytotoxicity of various cardenolides and of an anti-,1 siRNA was evaluated by means of MTT assay, quantitative videomicroscopy and through apoptosis assays. The in vivo activity of a novel cardenolide UNBS1450 was evaluated in a melanoma brain metastasis model. Our data show that all investigated human melanoma cell lines expressed high levels of the ,1 sub-unit, and 33% of human melanomas displayed significant ,1 sub-unit expression in correlation with the Breslow index. Furthermore, cardenolides (notably UNBS1450; currently in Phase I clinical trials) displayed marked anti-tumour effects against melanomas in vitro. This activity was closely paralleled by decreases in cMyc expression and by increases in apoptotic features. UNBS1450 also displayed marked anti-tumour activity in the aggressive human metastatic brain melanoma model in vivo. The ,1 sodium pump sub-unit could represent a potential novel target for combating melanoma. [source]


Effect of Boron Neutron Capture Therapy for Melanotic and Amelanotic Melanoma Transplanted into Mouse Brain

PIGMENT CELL & MELANOMA RESEARCH, Issue 1 2002
Masaki Iwakura
In order to develop a protocol to treat brain metastatic melanoma using our 10B- p -boronophenylalanine (BPA) boron neutron capture therapy (BNCT), we initiated the following studies (i), Comparative analyses of boron biodistribution between melanoma proliferating in the brain and skin among melanotic and amelanotic types, and (ii) Therapeutic evaluation of BPA,BNCT for brain melanoma models of both types, using survival times. Our present data have revealed that boron concentration in melanoma proliferating in the brain, the major prerequisite for successful BNCT, showed a positive correlation to melanin synthesizing activity in the same way as melanoma proliferating in skin. Further, the boron concentration ratio of melanoma to normal surrounding tissue for brain melanoma models was considerably higher than that for subcutaneous (s.c.) ones because of the existence of the blood,brain barrier (BBB). Additionally, from analyses of median and mean survival times following BNCT using low, middle, and high neutron doses, the therapeutic effect of BNCT for the amelanotic A1059 melanoma appeared at first glance to be higher than that for the highly BPA attracting and highly relative biological effect equivalent dose obtaining B15b melanoma. As the survival time was dependent on both regression and regrowth curves, and because the brain melanoma model in small animals made it difficult to evaluate these curves separately, we further examined the in vivo growth curve of both types of melanomas following implantation in s.c. tissue. The melanotic B15b melanoma was indeed found to possess much higher growth rate as compared with that of the amelanotic A1059 melanoma. The significance of boron biodistribution studies and BNCT survival curve analyses in forming an effective clinical protocol for individual human cases of melanoma brain metastasis is discussed. [source]


Oral delivery of tumor-targeting Salmonella exhibits promising therapeutic efficacy and low toxicity

CANCER SCIENCE, Issue 12 2009
Guo Chen
Tumor-targeting bacteria have been developed as powerful anticancer agents. Salmonella typhimurium VNP20009, a representative tumor-targeting strain, has been systemically administered as a single-agent therapy at doses of 1 × 106 to 3 × 106 colony-forming unit (cfu)/mouse, or in combination with other antitumor agents at doses of 1 × 104 to 2 × 105 cfu/mouse. Recently, we reported that oral delivery of VNP20009 at the dose of 1 × 109 cfu/mouse induced significant anticancer effects comparable to that induced by systemic administration of this strain at 1 × 104 cfu/mouse. To further address the efficacy and safety of oral administration of bacteria, here we performed a systemically comparative analysis of anticancer efficacy and toxicity of VNP20009 administered: (i) orally at a dose of 1 × 109 cfu/mouse (VNP9-oral); (ii) intraperitoneally at a dose of 1 × 104 cfu/mouse (VNP4-i.p.); or (iii) intraperitoneally at a dose of 1 × 106 cfu/mouse in tumor-free and tumor-bearing murine models. The results showed that VNP9-oral, similar to VNP4-i.p., induced significant tumor growth inhibition whereas VNP6-i.p. induced better anticancer effect in the B16F10 melanoma model. Among three treatments, VNP9-oral induced the mildest and reversible toxicity whereas VNP6-i.p. resulted in the most serious and irreversible toxicities when compared to other two treatments. Moreover, the combination of VNP9-oral with a low dose of chemotherapeutics produced comparable antitumor effects but displayed significantly reduced toxicity when compared to VNP6-i.p. The findings demonstrated that oral administration, as a novel avenue in the application of bacteria, is highly safe and effective. Moreover, the present preclinical study should facilitate the optimization of bacterial therapies with improved anticancer efficacy and reduced adverse effects in future clinical trials. (Cancer Sci 2009; 100: 2437,2443) [source]


Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature

CANCER SCIENCE, Issue 3 2009
Aki Ito
Heat shock protein (Hsp) 90 is a key regulator of a variety of oncogene products and cell-signaling molecules, and the therapeutic benefit of its inhibition in combination with radiation or chemotherapy has been investigated. In addition, hyperthermia has been used for many years to treat various malignant tumors. We previously described a system in which hyperthermia was induced using thermosensitive ferromagnetic particles (FMP) with a Curie temperature (Tc = 43,C) low enough to mediate automatic temperature control, and demonstrated its antitumor effect in a mouse melanoma model. In the present study, we examined the antitumor effects of combining a Hsp90 inhibitor (geldanamycin; GA) with FMP-mediated hyperthermia. In cultured B16 melanoma cells, GA exerted an antitumor effect by increasing the cells' susceptibility to hyperthermia and reducing expression of Akt. In an in vivo study, melanoma cells were subcutaneously injected into the backs of C57BL/6 mice. FMP were then injected into the resultant tumors, and the mice were divided into four groups: group I, no treatment (control); group II, one hyperthermia treatment; group III, GA alone; and group IV, GA with hyperthermia. When exposed to a magnetic field, the temperature of tissues containing FMP increased and stabilized at the Tc. In group IV, complete regression of tumors was observed in five of nine mice (56%), whereas no tumor regression was seen in groups I,III. Our findings suggest that inhibition of Hsp90 with hyperthermia increases its antitumor effect. Thus, the combination of FMP-mediated, self-regulating hyperthermia with Hsp90 inhibition has important implications for the treatment of cancer. (Cancer Sci 2009; 100: 558,564) [source]