Melanoma Cell Growth (melanoma + cell_growth)

Distribution by Scientific Domains


Selected Abstracts


Synthesis of Thia-Analogous Indirubin N -Glycosides and their Influence on Melanoma Cell Growth and Apoptosis

CHEMMEDCHEM, Issue 4 2010
Manfred Kunz Prof.
Stopping cancer in its tracks! Thia-analogues of indirubin- N -glycosides, prepared by condensation of N -glycosylisatines with thiaindane-3-one and subsequent deprotection, were tested for their activity against malignant melanoma cells. These indirubin- N -glycoside thia-analogues are active against melanoma cells, inducing growth arrest, apoptosis and inhibition of intracellular signal transduction. [source]


Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirus

EXPERIMENTAL DERMATOLOGY, Issue 8 2010
Lothar F. Fecker
Please cite this paper as: Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirus. Experimental Dermatology 2010; 19: e56,e66. Abstract:, The high mortality of melanoma demands the development of new strategies, and gene therapy may be considered provided improvements in efficacy and selectivity. Overexpression of the death ligand CD95L/FasL has been shown in previous studies as highly effective for apoptosis induction in melanoma cells. For efficient and selective targeting of melanoma, a conditional replication-competent adenoviral vector was constructed (Ad5-FFE-02), which drives CD95L expression by a tetracycline-inducible promoter. For restricting its replication to melanoma cells, the adenoviral E1A gene is controlled by a tyrosinase-derived promoter. Furthermore, adenoviral E1B was deleted and a mutated E1A was used to preferentially support replication in tumor cells. Proving its high selectivity and efficiency, strong expression of E1A and doxycycline-dependent induction of CD95L were characteristic for tyrosinase-positive melanoma cells after Ad5-FFE-02 transduction, whereas absent in non-melanoma cell lines. Importantly, Ad5-FFE-02-mediated cell lysis was restricted to melanoma cells, and induction of apoptosis was found only in tyrosinase and CD95 expressing cells. Finally, the combination of adenoviral replication and CD95L-mediated apoptosis resulted in an enhanced repression of melanoma cell growth. This new adenoviral vector may provide a basis for an efficient targeting of melanoma. [source]


Proteomic analysis identified N-cadherin, clusterin, and HSP27 as mediators of SPARC (secreted protein, acidic and rich in cysteines) activity in melanoma cells

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 22 2007
Marķa Soledad Sosa
Abstract Secreted protein, acidic and rich in cysteines (SPARC) is a secreted protein associated with increased aggressiveness of different human cancer types. In order to identify downstream mediators of SPARC activity, we performed a 2-DE proteomic analysis of human melanoma cells following antisense-mediated downregulation of SPARC expression. We found 23/504 differential spots, 15 of which were identified by peptide fingerprinting analysis. Three of the differential proteins (N-cadherin (N-CAD), clusterin (CLU), and HSP27) were validated by immunoblotting, confirming decreased levels of N-CAD and CLU and increased amounts of HSP27 in conditioned media of cells with diminished SPARC expression. Furthermore, transient knock down of SPARC expression in melanoma cells following adenoviral-mediated transfer of antisense RNA confirmed these changes. We next developed two different RNAs against SPARC that were able to inhibit in vivo melanoma cell growth. Immunoblotting of the secreted fraction of RNAi-transfected melanoma cells confirmed that downregulation of SPARC expression promoted decreased levels of N-CAD and CLU and increased secretion of HSP27. Transient re-expression of SPARC in SPARC-downregulated cells reverted extracellular N-CAD, CLU, and HSP27 to levels similar to those in the control. These results constitute the first evidence that SPARC, N-CAD, CLU, and HSP27 converge in a unique molecular network in melanoma cells. [source]


Bone morphogenetic protein 7 induces mesenchymal-to-epithelial transition in melanoma cells, leading to inhibition of metastasis

CANCER SCIENCE, Issue 11 2009
Yi-Rang Na
Bone morphogenetic protein (BMP) 7 counteracts physiological epithelial-to-mesenchymal transition, a process that is indicative of epithelial plasticity in developmental stages. Because epithelial-to-mesenchymal transition and its reversed process mesenchymal-to-epithelial transition (MET) are also involved in cancer progression, we investigated whether BMP7 plays a role in WM-266-4 melanoma cell growth and metastasis. An MTT assay was conducted in WM-266-4 and HEK293T cell lines to show the cell growth inhibition ability of BMP7 and cisplatin. Semiquantitative RT-PCR was used to determine MET in morphologically changed BMP7-treated melanoma cells. MET-induced cells expressed less a basic helix-loop-helix transcription factor (TWIST) in western blot analysis, and we confirm that BMP receptor (Alk2) siRNA transduction could restore TWIST protein expression via blocking of Smad 1, 5 and 8 signaling. Matrigel invasion and cell migration assays were done to investigate the BMP7-induced metastasis inhibition ability. BMP7 treatment only slightly reduced cell growth rate, but induced apparent MET. BMP7 also reduced the invasion and migration ability. Furthermore, BMP7 reduced the resistance of WM-266-4 cells to cisplatin. Collectively, our findings indicate that the metastatis inhibition ability of BMP7 is involved in MET, and that BMP7 could be used as a potential metastasis inhibitor in human melanoma cells. (Cancer Sci 2009) [source]