Home About us Contact | |||
Melanogaster
Kinds of Melanogaster Terms modified by Melanogaster Selected AbstractsREMATING IN DROSOPHILA MELANOGASTER: ARE INDIRECT BENEFITS CONDITION DEPENDENT?EVOLUTION, Issue 9 2010Tristan A. F. Long By measuring the direct and indirect fitness costs and benefits of sexual interactions, the feasibility of alternate explanations for polyandry can be experimentally assessed. This approach becomes more complicated when the relative magnitude of the costs and/or benefits associated with multiple mating (i.e., remating with different males) vary with female condition, as this may influence the strength and direction of sexual selection. Here, using the model organism Drosophila melanogaster, we test whether the indirect benefits that a nonvirgin female gains by remating ("trading-up") are influenced by her condition (body size). We found that remating by small-bodied, low-fecundity females resulted in the production of daughters of relatively higher fecundity, whereas the opposite pattern was observed for large-bodied females. In contrast, remating had no measurable effect on the relative reproductive success of sons from dams of either body size. These results are consistent with a hypothesis based on sexually antagonistic genetic variation. The implications of these results to our understanding of the evolution and consequences of polyandry are discussed. [source] MATING DENSITY AND THE STRENGTH OF SEXUAL SELECTION AGAINST DELETERIOUS ALLELES IN DROSOPHILA MELANOGASTEREVOLUTION, Issue 4 2008Nathaniel P. Sharp Deleterious alleles constantly enter populations via mutation. Their presence reduces mean fitness and may threaten population persistence. It has been suggested that sexual selection may be an efficient way by which deleterious alleles are removed from populations but there is little direct experimental evidence. Because of its potential role in mutational meltdowns, there is particular interest in whether the strength of sexual selection changes with density. For each of eight visible markers in Drosophila melanogaster we have compared the strength of sexual selection at two densities. We find evidence of strong sexual selection against most but not all of these alleles. There is no evidence that sexual selection tends to be stronger (or weaker) at high density relative to low density. In addition, we also measure the effects of these mutations on two key parameters relevant to population productivity,juvenile viability and female fecundity. In most cases, sexual selection is as strong or stronger than these other forms of selection. [source] SEXUAL SELECTION AND IMMUNE FUNCTION IN DROSOPHILA MELANOGASTEREVOLUTION, Issue 2 2008Kurt A. McKean The evolution of immune function depends not only on variation in genes contributing directly to the immune response, but also on genetic variation in other traits indirectly affecting immunocompetence. In particular, sexual selection is predicted to trade-off with immunocompetence because the extra investment of resources needed to increase sexual competitiveness reduces investment in immune function. Additional possible immunological consequences of intensifying sexual selection include an exaggeration of immunological sexual dimorphism, and the reduction of condition-dependent immunological costs due to selection of ,good genes' (the immunocompetence handicap hypothesis, ICHH). We tested for these evolutionary possibilities by increasing sexual selection in laboratory populations of Drosophila melanogaster for 58 generations by reestablishing a male-biased sex ratio at the start of each generation. Sexually selected flies were larger, took longer to develop, and the males were more sexually competitive than males from control (equal sex ratio) lines. We found support for the trade-off hypothesis: sexually selected males were found to have reduced immune function compared to control males. However, we found no evidence that sexual selection promoted immunological sexual dimorphism because females showed a similar reduction in immune function. We found no evidence of evolutionary changes in the condition-dependent expression of immunocompetence contrary to the expectations of the ICHH. Lastly, we compared males from the unselected base population that were either successful (IS) or unsuccessful (IU) in a competitive mating experiment. IS males showed reduced immune function relative to IU males, suggesting that patterns of phenotypic correlation largely mirror patterns of genetic correlation revealed by the selection experiment. Our results suggest increased disease susceptibility could be an important cost limiting increases in sexual competitiveness in populations experiencing intense sexual selection. Such costs may be particularly important given the high intersex correlation, because this represents an apparent genetic conflict, preventing males from reaching their sexually selected optimum. [source] ADAPTATION TO EXPERIMENTAL ALTERATIONS OF THE OPERATIONAL SEX RATIO IN POPULATIONS OF DROSOPHILA MELANOGASTEREVOLUTION, Issue 2 2008Max Reuter Theory predicts that males adapt to sperm competition by increasing their investment in testis mass to transfer larger ejaculates. Experimental and comparative data support this prediction. Nevertheless, the relative importance of sperm competition in testis size evolution remains elusive, because experiments vary only sperm competition whereas comparative approaches confound it with other variables, in particular male mating rate. We addressed the relative importance of sperm competition and male mating rate by taking an experimental evolution approach. We subjected populations of Drosophila melanogaster to sex ratios of 1:1, 4:1, and 10:1 (female:male). Female bias decreased sperm competition but increased male mating rate and sperm depletion. After 28 generations of evolution, males from the 10:1 treatment had larger testes than males from other treatments. Thus, testis size evolved in response to mating rate and sperm depletion, not sperm competition. Furthermore, our experiment demonstrated that drift associated with sex ratio distortion limits adaptation; testis size only evolved in populations in which the effect of sex ratio bias on the effective population size had been compensated by increasing the numerical size. We discuss these results with respect to reproductive evolution, genetic drift in natural and experimental populations, and consequences of natural sex ratio distortion. [source] EJACULATE DEPLETION PATTERNS EVOLVE IN RESPONSE TO EXPERIMENTAL MANIPULATION OF SEX RATIO IN DROSOPHILA MELANOGASTEREVOLUTION, Issue 8 2007Jon R. Linklater We assessed the extent to which traits related to ejaculate investment have evolved in lines of Drosophila melanogaster that had an evolutionary history of maintenance at biased sex ratios. Measures of ejaculate investment were made in males that had been maintained at male-biased (MB) and female-biased (FB) adult sex ratios, in which levels of sperm competition were high and low, respectively. Theory predicts that when the risk of sperm competition is high and mating opportunities are rare (as they are for males in the MB populations), males should increase investment in their few matings. We therefore predicted that males from the MB lines would (1) exhibit increased investment in their first mating opportunities and (2) deplete their ejaculates at a faster rate when mating multiply, in comparison to FB males. To investigate these predictions we measured the single mating productivity of males from three replicates each of MB and FB lines mated to five wild-type virgin females in succession. In contrast to the first prediction, there was no evidence for differences in productivity between MB and FB line males in their first matings. The second prediction was upheld: mates of MB and FB males suffered increasingly reduced productivity with successive matings, but the decline was significantly more pronounced for MB than for FB males. There was a significant reduction in the size of the accessory glands and testes of males from the MB and FB regimes after five successive matings. However, the accessory glands, but not testes, of MB males became depleted at a significantly faster rate than those of FB males. The results show that male reproductive traits evolved in response to the level of sperm competition and suggest that the ability to maintain fertility over successive matings is associated with the rate of ejaculate, and particularly accessory gland, depletion. [source] Risk of breast cancer in association with exposure to two different groups of tricyclic antidepressants,PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, Issue 10 2006Hani Tamim PhD Abstract Purpose In 2002, we reported an epidemiological study in which we found that some tricyclic antidepressants (identified as genotoxic in Drosophila Melanogaster) were associated with an increased risk of breast cancer, when exposure took place 11,15 years before the date of diagnosis. The implications of the results found lead us to carry out a separate case-control study, using the same source population, to validate the conclusions drawn from our previous study. Methods We accrued 7330 breast cancer cases, diagnosed between 1981 and 2000, and 29,320 controls matched on age and time. Results The association between exposure to genotoxic TCAs 11,15 years before diagnosis and the risk of breast cancer development was much weaker, as compared to what was reported in our previous study. The relative risk of breast cancer in women exposed to high doses of genotoxic TCAs 11,15 years before diagnosis was 1.17 (95%CI: 0.79,1.74), while in women exposed to high levels of non-genotoxic TCAs during the same period it was 0.95 (95%CI: 0.61,1.48). Conclusion In conclusion, we did not find supporting evidence for an increased risk of breast cancer among women exposed to TCAs up to 20 years in the past. Copyright © 2006 John Wiley & Sons, Ltd. [source] Stress Resistance and Environmental Dependency of Inbreeding Depression in Drosophila melanogasterCONSERVATION BIOLOGY, Issue 4 2000Jesper Dahlgaard Two important issues are whether stress and inbreeding effects are independent as opposed to synergistic, and whether inbreeding effects are general across stresses as opposed to stress-specific. We found that inbreeding reduced resistance to acetone and desiccation in adult Drosophila melanogaster, whereas resistance to knockdown heat stress was not affected. Inbred flies, however, experienced a greater proportional decrease in productivity than outbreds following heat stress. Correlations using line means indicated that all resistance traits were uncorrelated in the inbred as well as in the outbred flies. Recessive, deleterious alleles therefore did not appear to have any general deleterious effects on stress resistance. Inbreeding within a specific environment and selection for resistant genotypes may therefore purge a population of deleterious genes specific to only one environmental stress. Resumen: Tanto la endogamia como el estrés ambiental pueden tener efectos adversos sobre la adaptabilidad afectando la conservación de especies en peligro de extinción. Dos temas importantes son determinar si los efectos del estrés y la endogamia son independientes en lugar de ser sinérgicos, y determinar si los efectos de la endogamia son generales para distintos tipos de estrés o si son específicos para un tipo determinado de estrés. Encontramos que la endogamia reduce la resistencia a la acetona y la desecación en adultos de Drosophila melanogaster, mientras que la resistencia al efecto demoledor del estrés por calor no fue afectada. Sin embargo, las moscas endogámicas experimentaron una disminución proporcionalmente mayor en la productividad que aquellas moscas sin endogamia después de experimentar un estrés por calor. Las correlaciones obtenidas usando líneas medias indicaron que las características de resistencia no estuvieron correlacionadas ni en moscas con endogamia, ni en moscas sin ella. Aparentemente los alelos nocivos recesivos no tuvieron ningún efecto nocivo general en la resistencia al estrés. La endogamia dentro de un ambiente específico y la selección por genotipos resistentes podrían, por lo tanto, eliminar una población de genes nocivos específicos a un solo estrés ambiental. [source] Native nonmuscle myosin II stability and light chain binding in Drosophila melanogasterCYTOSKELETON, Issue 10 2006Josef D. Franke Abstract Native nonmuscle myosin IIs play essential roles in cellular and developmental processes throughout phylogeny. Individual motor molecules consist of a heterohexameric complex of three polypeptides which, when properly assembled, are capable of force generation. Here, we more completely characterize the properties, relationships and associations that each subunit has with one another in Drosophila melanogaster. All three native nonmuscle myosin II polypeptide subunits are expressed in close to constant stoichiometry to each other throughout development. We find that the stability of two subunits, the heavy chain and the regulatory light chain, depend on one another whereas the stability of the third subunit, the essential light chain, does not depend on either the heavy chain or regulatory light chain. We demonstrate that heavy chain aggregates, which form when regulatory light chain is lacking, associate with the essential light chain in vivo,thus showing that regulatory light chain association is required for heavy chain solubility. By immunodepletion we find that the majority of both light chains are associated with the nonmuscle myosin II heavy chain but pools of free light chain and/or light chain bound to other proteins are present. We identify four myosins (myosin II, myosin V, myosin VI and myosin VIIA) and a microtubule-associated protein (asp/Abnormal spindle) as binding partners for the essential light chain (but not the regulatory light chain) through mass spectrometry and co-precipitation. Using an in silico approach we identify six previously uncharacterized genes that contain IQ-motifs and may be essential light chain binding partners. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source] Dynamics of the endoplasmic reticulum during early development of Drosophila melanogasterCYTOSKELETON, Issue 3 2003Yves Bobinnec Abstract In this study, we analyze for the first time endoplasmic reticulum (ER) dynamics and organization during oogenesis and embryonic divisions of Drosophila melanogaster using a Protein Disulfide Isomerase (PDI) GFP chimera protein. An accumulation of ER material into the oocyte takes place during the early steps of oogenesis. The compact organization of ER structures undergoes a transition to an expanded reticular network at fertilization. At the syncytial stage, this network connects to the nuclear envelope as each nucleus divides. Time-lapse confocal microscopy on PDI transgenic embryos allowed us to characterize a rapid redistribution of the ER during the mitotic phases. The ER network is massively recruited to the spindle poles in prophase. During metaphase most of the ER remains concentrated at the spindle poles and shortly thereafter forms several layers of membranes along the ruptured nuclear envelope. Later, during telophase an accumulation of ER material occurs at the spindle equator. We also analyzed the subcellular organization of the ER network at the ultrastructural level, allowing us to corroborate the results from confocal microscopy studies. This dynamic redistribution of ER suggests an unexpected regulatory function for this organelle during mitosis. Cell Motil. Cytoskeleton 54:217,225, 2003. © 2003 Wiley-Liss, Inc. [source] Signaling in the third dimension: The peripodial epithelium in eye disc developmentDEVELOPMENTAL DYNAMICS, Issue 9 2009Mardelle Atkins Abstract The eye-antennal imaginal disc of Drosophila melanogaster has often been described as an epithelial monolayer with complex signaling events playing out in two dimensions. However, the imaginal disc actually comprises two opposing epithelia (the peripodial epithelium, or PE, and the disc proper, or DP) separated by a lumen to form a sac-like structure. Recent studies expose complex molecular interactions between the PE and the DP, and reveal dynamic communication between the two tissues. Further findings suggest the PE makes important contributions to DP development by acting as a source of signaling molecules as well as cells. Here we summarize those findings and highlight implications for further research. Developmental Dynamics 238:2139,2148, 2009. © 2009 Wiley-Liss, Inc. [source] Evolutionary conservation and divergence of the segmentation process in arthropodsDEVELOPMENTAL DYNAMICS, Issue 6 2007Wim G. M. Damen Abstract A fundamental characteristic of the arthropod body plan is its organization in metameric units along the anterior,posterior axis. The segmental organization is laid down during early embryogenesis. Our view on arthropod segmentation is still strongly influenced by the huge amount of data available from the fruit fly Drosophila melanogaster (the Drosophila paradigm). However, the simultaneous formation of the segments in Drosophila is a derived mode of segmentation. Successive terminal addition of segments from a posteriorly localized presegmental zone is the ancestral mode of arthropod segmentation. This review focuses on the evolutionary conservation and divergence of the genetic mechanisms of segmentation within arthropods. The more downstream levels of the segmentation gene network (e.g., segment polarity genes) appear to be more conserved than the more upstream levels (gap genes, Notch/Delta signaling). Surprisingly, the basally branched arthropod groups also show similarities to mechanisms used in vertebrate somitogenesis. Furthermore, it has become clear that the activation of pair rule gene orthologs is a key step in the segmentation of all arthropods. Important findings of conserved and diverged aspects of segmentation from the last few years now allow us to draw an evolutionary scenario on how the mechanisms of segmentation could have evolved and led to the present mechanisms seen in various insect groups including dipterans like Drosophila. Developmental Dynamics 236:1379,1391, 2007. © 2007 Wiley-Liss, Inc. [source] Drosophila melanogaster p24 genes have developmental, tissue-specific, and sex-specific expression patterns and functionsDEVELOPMENTAL DYNAMICS, Issue 2 2007Kara A. Boltz Abstract Genes encoding members of the p24 family of intracellular trafficking proteins are present throughout animal and plant lineages. However, very little is known about p24 developmental, spatial, or sex-specific expression patterns or how localized expression affects function. We investigated these problems in Drosophila melanogaster, which contains nine genes encoding p24 proteins. One of these genes, logjam (loj), is expressed in the adult female nervous system and ovaries and is essential for oviposition. Nervous system-specific expression of loj, but not ovary-specific expression, rescues the behavioral defect of mutants. The Loj protein localizes to punctate structures in the cellular cytoplasm. These structures colocalize with a marker specific to the intermediate compartment and cis -Golgi, consistent with experimental evidence from other systems suggesting that p24 proteins function in intracellular transport between the endoplasmic reticulum and Golgi. Our findings reveal that Drosophila p24 transcripts are developmentally and tissue-specifically expressed. CG31787 is male-specifically expressed gene that is present during the larval, pupal, and adult stages. Female CG9053 mRNA is limited to the head, whereas males express this gene widely. Together, our studies provide experimental evidence indicating that some p24 genes have sex-specific expression patterns and tissue- and sex-limited functions. Developmental Dynamics 236:544,555, 2007. © 2006 Wiley-Liss, Inc. [source] A screen for neurotransmitter transporters expressed in the visual system of Drosophila melanogaster identifies three novel genesDEVELOPMENTAL NEUROBIOLOGY, Issue 5 2007Rafael Romero-Calderón Abstract The fly eye provides an attractive substrate for genetic studies, and critical transport activities for synaptic transmission and pigment biogenesis in the insect visual system remain unknown. We therefore screened for transporters in Drosophila melanogaster that are down-regulated by genetically ablating the eye. Using a large panel of transporter specific probes on Northern blots, we identified three transcripts that are down-regulated in flies lacking eye tissue. Two of these, CG13794 and CG13795, are part of a previously unknown subfamily of putative solute carriers within the neurotransmitter transporter family. The third, CG4476, is a member of a related subfamily that includes characterized nutrient transporters expressed in the insect gut. Using imprecise excision of a nearby transposable P element, we have generated a series of deletions in the CG4476 gene. In fast phototaxis assays, CG4476 mutants show a decreased behavioral response to light, and the most severe mutant behaves as if it were blind. These data suggest an unforeseen role for the "nutrient amino acid transporter" subfamily in the nervous system, and suggest new models to study transport function using the fly eye. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] Circadian changes in Drosophila motor terminalsDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2007Kerstin I. Mehnert Abstract In Drosophila melanogaster, as in most other higher organisms, a circadian clock controls the rhythmic distribution of rest/sleep and locomotor activity. Here we report that the morphology of Drosophila flight neuromuscular terminals changes between day and night, with a rhythm in synaptic bouton size that continues in constant darkness, but is abolished during aging. Furthermore, arrhythmic mutations in the clock genes timeless and period also disrupt this circadian rhythm. Finally, these clock mutants also have an opposing effect on the nonrhythmic phenotype of neuronal branching, with tim mutants showing a dramatic hyperbranching morphology and per mutants having fewer branches than wild-type flies. These unexpected results reveal further circadian as well as nonclock related pleiotropic effects for these classic behavioral mutants. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a)DEVELOPMENTAL NEUROBIOLOGY, Issue 14 2006Daniela Pelz Abstract Understanding how odors are coded within an olfactory system requires knowledge about its input. This is constituted by the molecular receptive ranges (MRR) of olfactory sensory neurons that converge in the glomeruli of the olfactory bulb (vertebrates) or the antennal lobe (AL, insects). Aiming at a comprehensive characterization of MRRs in Drosophila melanogaster we measured odor-evoked calcium responses in olfactory sensory neurons that express the olfactory receptor Or22a. We used an automated stimulus application system to screen [Ca2+] responses to 104 odors both in the antenna (sensory transduction) and in the AL (neuronal transmission). At 10,2 (vol/vol) dilution, 39 odors elicited at least a half-maximal response. For these odorants we established dose-response relationships over their entire dynamic range. We tested 15 additional chemicals that are structurally related to the most efficient odors. Ethyl hexanoate and methyl hexanoate were the best stimuli, eliciting consistent responses at dilutions as low as 10,9. Two substances led to calcium decrease, suggesting that Or22a might be constitutively active, and that these substances might act as inverse agonists, reminiscent of G-protein coupled receptors. There was no difference between the antennal and the AL MRR. Furthermore we show that Or22a has a broad yet selective MRR, and must be functionally described both as a specialist and a generalist. Both these descriptions are ecologically relevant. Given that adult Drosophila use approximately 43 ORs, a complete description of all MRRs appears now in reach. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Pinocchio, a novel protein expressed in the antenna, contributes to olfactory behavior in Drosophila melanogasterDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2005Stephanie M. Rollmann Abstract Most organisms depend on chemoreception for survival and reproduction. In Drosophila melanogaster multigene families of chemosensory receptors and putative odorant binding proteins have been identified. Here, we introduce an additional distinct protein, encoded by the CG4710 gene, that contributes to olfactory behavior. Previously, we identified through P[lArB] -element mutagenesis a smell impaired (smi) mutant, smi21F, with odorant-specific defects in avoidance responses. Here, we show that the smi21F mutant also exhibits reduced attractant responses to some, but not all, of a select group of odorants. Furthermore, electroantennogram amplitudes are increased in smi21F flies. Characterization of flanking sequences of the P[lArB] insertion site, complementation mapping, phenotypic reversion through P -element excision, and expression analysis implicate a predicted gene, CG4710, as the candidate smi gene. CG4710 produces two transcripts that encode proteins that contain conserved cysteines and which are reduced in the smi21F mutant. Furthermore, in situ hybridization reveals CG4710 expression in the third antennal segment. We have named this gene of previously unknown function and its product "Pinocchio (Pino)". © 2005 Wiley Periodicals, Inc. J Neurobiol., 2005 [source] Olfactory neurons expressing identified receptor genes project to subsets of glomeruli within the antennal lobe of Drosophila melanogasterDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2003Sheetal Bhalerao Abstract We have used green fluorescent protein to trace the projection patterns of olfactory neurons expressing identified candidate odorant receptors to the brain of Drosophila. At the periphery, receptor expression correlates with specific sense-organ subtype, independent of location on the antennal surface. The majority of neurons expressing a given receptor converge onto one or two major glomeruli as described previously. However, we detected a few additional glomeruli, which are less intensely innervated and also tend to be somewhat variable. This means that functionally similar olfactory neurons connect to small subsets of glomeruli rather than to a single glomerulus as believed previously. This finding has important implications for our understanding of odor coding and the generation of olfactory behavior. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 577,592, 2003 [source] Dopamine and sensory tissue development in Drosophila melanogasterDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2001Wendi Neckameyer Abstract Dopamine is an important signaling molecule in the nervous system; it also plays a vital role in the development of diverse non-neuronal tissues in the fruit fly Drosophila melanogaster. The current study demonstrates that males depleted of dopamine as third instar larvae (via inhibition of the biosynthetic enzyme tyrosine hydroxylase) demonstrated abnormalities in courtship behavior as adults. These defects were suggestive of abnormalities in sensory perception and/or processing. Electroretinograms (ERGs) of eyes from adults depleted of dopamine for 1 day as third instar larvae revealed diminished or absent on- and off-transients. These sensory defects were rescued by the addition of L -DOPA in conjunction with tyrosine hydroxylase inhibition during the larval stage. Depletion of dopamine in the first or second larval instar was lethal, but this was not due to a general inhibition of proliferative cells. To establish that dopamine was synthesized in tissues destined to become part of the adult sensory apparatus, transgenic lines were generated containing 1 or 4 kb of 5, upstream sequences from the Drosophila tyrosine hydroxylase gene (DTH) fused to the E. coli ,-galactosidase reporter. The DTH promoters directed expression of the reporter gene in discrete and consistent patterns within the imaginal discs, in addition to the expected expression in gonadal, brain, and cuticular tissues. The ,-galactosidase expression colocalized with tyrosine hydroxylase protein. These results are consistent with a developmental requirement for dopamine in the normal physiology of adult sensory tissues. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 280,294, 2001 [source] New reproductive anomalies in fruitless -mutant Drosophila males: Extreme lengthening of mating durations and infertility correlated with defective serotonergic innervation of reproductive organsDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2001Gyunghee Lee Abstract Several features of male reproductive behavior are under the neural control of fruitless (fru) in Drosophila melanogaster. This gene is known to influence courtship steps prior to mating, due to the absence of attempted copulation in the behavioral repertoire of most types of fru -mutant males. However, certain combinations of fru mutations allow for fertility. By analyzing such matings and their consequences, we uncovered two striking defects: mating times up to four times the normal average duration of copulation; and frequent infertility, regardless of the time of mating by a given transheterozygous fru -mutant male. The lengthened copulation times may be connected with fru -induced defects in the formation of a male-specific abdominal muscle. Production of sperm and certain seminal fluid proteins are normal in these fru mutants. However, analysis of postmating qualities of females that copulated with transheterozygous mutants strongly implied defects in the ability of these males to transfer sperm and seminal fluids. Such abnormalities may be associated with certain serotonergic neurons in the abdominal ganglion in which production of 5HT is regulated by fru. These cells send processes to contractile muscles of the male's internal sex organs; such projection patterns are aberrant in the semifertile fru mutants. Therefore, the reproductive functions regulated by fruitless are expanded in their scope, encompassing not only the earliest stages of courtship behavior along with almost all subsequent steps in the behavioral sequence, but also more than one component of the culminating events. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 121,149, 2001 [source] Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organismsECOLOGICAL ENTOMOLOGY, Issue 5 2002Bregje Wertheim Abstract 1. Aggregation pheromones can evolve when individuals benefit from clustering. Such a situation can arise with an Allee effect, i.e. a positive relationship between individual fitness and density of conspecifics. Aggregation pheromone in Drosophila induces aggregated oviposition. The aim of the work reported here was to identify an Allee effect in the larval resource exploitation by Drosophila melanogaster, which could explain the evolution of aggregation pheromone in this species. 2. It is hypothesised that an Allee effect in D. melanogaster larvae arises from an increased efficiency of a group of larvae to temper fungal growth on their feeding substrate. To test this hypothesis, standard apple substrates were infested with specified numbers of larvae, and their survival and development were monitored. A potential beneficial effect of the presence of adult flies was also investigated by incubating a varying number of adults on the substrate before introducing the larvae. Adults inoculate substrates with yeast, on which the larvae feed. 3. Fungal growth was related negatively to larval survival and the size of the emerging flies. Although the fungal growth on the substrate was largely reduced at increased larval densities, the measurements of fitness components indicated no Allee effect between larval densities and larval fitness, but rather indicated larval competition. 4. In contrast, increased adult densities on the substrates prior to larval development yielded higher survival of the larvae, larger emerging flies, and also reduced fungal growth on the substrates. Hence, adults enhanced the quality of the larval substrate and significant benefits of aggregated oviposition in fruit flies were shown. Experiments with synthetic pheromone indicated that the aggregation pheromone itself did not contribute directly to the quality of the larval resource. 5. The interaction among adults, micro-organisms, and larval growth is discussed in relation to the consequences for total fitness. [source] Opposing clines for high and low temperature resistance in Drosophila melanogasterECOLOGY LETTERS, Issue 5 2002Ary A. Hoffmann Abstract In insects, species comparisons suggest a weak association between upper thermal limits and latitude in contrast to a stronger association for lower limits. To compare this to latitudinal patterns of thermal responses within species, we considered latitudinal variation in heat and cold resistance in Drosophila melanogaster. We found opposing clines in resistance to these temperature extremes in comparisons of 17,24 populations from coastal eastern Australia. Knockdown time following heat shock increased towards the tropics, whereas recovery time following cold shock decreased towards temperate latitudes. Mortality following cold shock also showed a clinal pattern. Clinal associations with latitude were linear and related to minimum temperatures in the coldest month (for cold resistance) and maximum temperatures in the warmest month (for heat resistance). This suggests that within species both high and low temperature responses can vary with latitude as a consequence of direct or indirect effects of selection. [source] Drosophila melanogaster: the model organismENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2006David B. Roberts Abstract In the 20th century, there were two decades during which Drosophila melanogaster was the most significant model organism and each decade led to the establishment of new scientific disciplines. The first decade was roughly from 1910 and during this period a small group at Columbia University, headed by Thomas Hunt Morgan, established the rules of transmission genetics with which we are all familiar. In the second decade, roughly from 1970, many of the principles and techniques of the earlier period were used to determine the genetic control of basic aspects of the biology of organisms, notably their development and their behaviour. In this review I will show that it was not only the genius of the research workers (five were awarded Nobel Prizes and it has been argued, with justification, that at least one more should have been awarded) but also the special features of D. melanogaster that led to these advances. While Drosophila is still a significant model organism, the advent of molecular biology permits the investigation of organisms less amenable to genetic analysis, but the principles applied in these investigations were in the main principles laid down during the earlier work on Drosophila. [source] Larval pupation site preference on fruit in different species of DrosophilaENTOMOLOGICAL RESEARCH, Issue 3 2008Nakul B. VANDAL Abstract Larval pupation site preference (PSP) of different species of Drosophila was analyzed on fruit in the laboratory. The larvae of D. melanogaster, D. ananassae, D. virilis, D. novamexicana and D. hydei pupated on the surface of glass vials; D. simulans, D. yakuba, D. mauritiana and D. malerkotliana pupated in/on fruit; and D. rajasekari pupated on cotton plugs in all experiments. D. bipectinata larvae changed their preference from fruit in the control to glass surface for all of the fruits tested. The statistical analysis of PSP (glass and fruit) found a significant result in that compared to other species, D. mauritiana and D. ananassae preferred to pupate on cotton compared to the control. [source] Expressed sequence tag analysis of the diapausing queen of the bumblebee Bombus ignitusENTOMOLOGICAL RESEARCH, Issue 4 2006Yeon-Ju KIM Abstract We constructed a full-length cDNA library from diapausing queens of the bumblebee Bombus ignitus. A total of 480 randomly selected clones was sequenced by single-run 5,-end sequencing. Of these, there were 437 high quality clones, 23 poor quality clones and 20 read-fail clones. Each high quality clone sequence was searched against a public protein database. The most frequently found matching genes were ribosomal proteins (12.5%), p10 (3.58%), cytochrome P450 monooxygenase (3.13%) and sensory appendage protein (2.9%). Sequence similarity analysis between bumblebees and other insect species showed that 72 out of 437 (16.5%) bumblebee expressed sequence tags (EST) matched sequences of Apis mellifera, with matches to Drosophila melanogaster (6.6%), Caenorhabditis briggsae (6.2%), Lysiphlebus testaceipes (4.8%), Periplaneta americana (3.7%) and Anopheles gambiae (3.4%) following, suggesting that sequence similarity of bumblebee EST is closest to that of A. mellifera. Functional classification of EST based on Gene Ontology showed that most genes found by sequencing are associated with physiological processes in the bumblebee. The results of sequencing and analysis of our 437 cDNA demonstrated that high-throughput EST sequencing and data analysis are powerful means for identifying novel genes and for expression profiling. Our bumblebee EST collection could be a useful platform for further studies of gene expression in diapausing bumblebees. [source] Genotoxicity of three mouthwash products, Cepacol®, Periogard®, and Plax®, in the Drosophila wing-spot testENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 8 2007Fábio Rodrigues Abstract Antiseptic mouthwashes used in biofilm control are widely available in the marketplace, despite inconsistent data concerning their genetic and cellular toxicity. In the present study, we investigated the genotoxic potential of three antiseptics currently used for odontologic treatment, Cepacol® (containing cetylpyridinium chloride), Periogard® (chlorhexidine digluconate), and Plax® (triclosan). Genotoxicity was evaluated using the Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster, employing flies having normal bioactivation (the standard cross) and flies with increased cytochrome P450-dependent biotransformation capacity (the high bioactivation cross). Periogard and Plax produced negative responses in both types of flies; however, Cepacol (75 and 100%) produced positive responses in both the standard and high bioactivation assays, with the genotoxic responses mainly due to the induction of mitotic recombination. Assays performed with ethanol and cetylpirydinium chloride, two major ingredients of Cepacol, indicated that the genotoxity of the mouthwash is likely to be due to ethanol. Environ. Mol. Mutagen., 2007. © 2007 Wiley-Liss, Inc. [source] Dose- and time-dependent responses for micronucleus induction by X-rays and fast neutrons in gill cells of medaka (Oryzias latipes)ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2004Akinori Takai Abstract Medaka fish (Oryzias latipes) were exposed to various doses of X-rays or fast neutrons, and the frequency of micronucleated cells (MNCs) was measured in gills sampled at 12- or 24-hr intervals from 12 to 96 hr after exposure. The resulting time course of MNC frequency was biphasic, with a clear peak 24 hr after exposure, irrespective of the kind of radiation applied and the dose used. The half-life of MNCs induced in the gill tissues by the two exposures fluctuated around 28 hr, with no significant dose-dependent trend for either X-ray- or neutron-exposed fish. As assayed 24 hr after exposure, the MNC frequency increased linearly over the control level with increasing doses of both X-rays and fast neutrons. The relative biological effectiveness (RBE) of fast neutrons to X-rays for MNC induction was estimated to be 4.3 ± 0.6. This value is close to the RBE value of 5.1 ± 0.3 reported for fast neutron induction of somatic crossing-over mutations in Drosophila melanogaster that arise from recombination repair of DNA double-strand breaks. These results and other data support our conclusion that the medaka gill cell micronucleus assay is a reliable short-term test for detecting potential inducers of DNA double-strand breaks. Environ. Mol. Mutagen. 44:108,112, 2004. © 2004 Wiley-Liss, Inc. [source] Adenylyl cyclase encoded by AC78C participates in sugar perception in Drosophila melanogasterEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2008Kohei Ueno Abstract In gustatory receptor neurons (GRNs) in Drosophila melanogaster, Gr5a and one of the Gr64s encode sugar receptors with seven transmembrane domains. Previously, we have shown that the responses to various sugars are depressed in DGs, mutant flies (Ueno et al., 2006). Because DGs, is a homolog of Gs, we hypothesized that the sugar receptors are coupled to adenylyl cyclase (AC) in Drosophila. The aim of this study was to identify the AC that participates in sugar perception. Here, we found that an AC inhibitor, MDL-12330A, depressed the response in GRNs to trehalose as well as sucrose; that an AC gene, AC78C, was expressed in the sugar-sensitive GRNs; that RNAi against AC78C depressed the electrical response in GRNs to sucrose; and that the sugar response in GRNs, as well as sugar intake in a behavioral assay in an AC78C mutant, was depressed at low sugar concentrations. We conclude that AC78C, via cAMP, participates in the sugar-taste signaling pathway at the low concentration range. [source] Functional characterization of a neuropeptide F-like receptor from Drosophila melanogasterEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003Guoping Feng Abstract A cDNA clone encoding a seven-transmembrane domain, G-protein-coupled receptor (NPFR76F, also called GPCR60), has been isolated from Drosophila melanogaster. Deletion mapping showed that the gene encoding this receptor is located on the left arm of the third chromosome at position 76F. Northern blotting and whole mount in situ hybridization have shown that this receptor is expressed in a limited number of neurons in the central and peripheral nervous systems of embryos and adults. Analysis of the deduced amino acid sequence suggests that this receptor is related to vertebrate neuropeptide Y receptors. This Drosophila receptor shows 62,66% similarity and 32,34% identity to type 2 neuropeptide Y receptors cloned from a variety of vertebrate sources. Coexpression in Xenopus oocytes of NPFR76F with the promiscuous G-protein G,16 showed that this receptor is activated by the vertebrate neuropeptide Y family to produce inward currents due to the activation of an endogenous oocyte calcium-dependent chloride current. Maximum receptor activation was achieved with short, putative Drosophila neuropeptide F peptides (Drm-sNPF-1, 2 and 2s). Neuropeptide F-like peptides in Drosophila have been implicated in a signalling system that modulates food response and social behaviour. The identification of this neuropeptide F-like receptor and its endogenous ligand by reverse pharmacology will facilitate genetic and behavioural studies of neuropeptide functions in Drosophila. [source] REMATING IN DROSOPHILA MELANOGASTER: ARE INDIRECT BENEFITS CONDITION DEPENDENT?EVOLUTION, Issue 9 2010Tristan A. F. Long By measuring the direct and indirect fitness costs and benefits of sexual interactions, the feasibility of alternate explanations for polyandry can be experimentally assessed. This approach becomes more complicated when the relative magnitude of the costs and/or benefits associated with multiple mating (i.e., remating with different males) vary with female condition, as this may influence the strength and direction of sexual selection. Here, using the model organism Drosophila melanogaster, we test whether the indirect benefits that a nonvirgin female gains by remating ("trading-up") are influenced by her condition (body size). We found that remating by small-bodied, low-fecundity females resulted in the production of daughters of relatively higher fecundity, whereas the opposite pattern was observed for large-bodied females. In contrast, remating had no measurable effect on the relative reproductive success of sons from dams of either body size. These results are consistent with a hypothesis based on sexually antagonistic genetic variation. The implications of these results to our understanding of the evolution and consequences of polyandry are discussed. [source] ASSOCIATION BETWEEN SEX RATIO DISTORTION AND SEXUALLY ANTAGONISTIC FITNESS CONSEQUENCES OF FEMALE CHOICEEVOLUTION, Issue 8 2009Tim Connallon Genetic variation can be beneficial to one sex yet harmful when expressed in the other,a condition referred to as sexual antagonism. Because X chromosomes are transmitted from fathers to daughters, and sexually antagonistic fitness variation is predicted to often be X-linked, mates of relatively low-fitness males might produce high-fitness daughters whereas mates of high-fitness males produce low-fitness daughters. Such fitness consequences have been predicted to influence the evolution of female mating biases and the offspring sex ratio. Females might evolve to prefer mates that provide good genes for daughters or might adjust offspring sex ratios in favor of the sex with the highest relative fitness. We test these possibilities in a laboratory-adapted population of Drosophila melanogaster, and find that females preferentially mate with males carrying genes that are deleterious for daughters. Preferred males produce equal numbers of sons and daughters, whereas unpreferred males produce female-biased sex ratios. As a consequence, mean offspring fitness of unpreferred males is higher than offspring fitness of preferred males. This observation has several interesting implications for sexual selection and the maintenance of population genetic variation for fitness. [source] |