Melanin-concentrating Hormone (melanin-concentrating + hormone)

Distribution by Scientific Domains


Selected Abstracts


Characterization of two melanin-concentrating hormone genes in zebrafish reveals evolutionary and physiological links with the mammalian MCH system

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 5 2009
Jennifer R. Berman
Abstract Melanin-concentrating hormone (MCH) regulates feeding and complex behaviors in mammals and pigmentation in fish. The relationship between fish and mammalian MCH systems is not well understood. Here, we identify and characterize two MCH genes in zebrafish, Pmch1 and Pmch2. Whereas Pmch1 and its corresponding MCH1 peptide resemble MCH found in other fish, the zebrafish Pmch2 gene and MCH2 peptide share genomic structure, synteny, and high peptide sequence homology with mammalian MCH. Zebrafish Pmch genes are expressed in closely associated but non-overlapping neurons within the hypothalamus, and MCH2 neurons send numerous projections to multiple MCH receptor-rich targets with presumed roles in sensory perception, learning and memory, arousal, and homeostatic regulation. Preliminary functional analysis showed that whereas changes in zebrafish Pmch1 expression correlate with pigmentation changes, the number of MCH2-expressing neurons increases in response to chronic food deprivation. These findings demonstrate that zebrafish MCH2 is the putative structural and functional ortholog of mammalian MCH and help elucidate the nature of MCH evolution among vertebrates. J. Comp. Neurol. 517:695,710, 2009. © 2009 Wiley-Liss, Inc. [source]


ORIGINAL ARTICLE: The approach to the mechanism of calcitonin gene-related peptide-inducing inhibition of food intake

JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 5 2010
J.-Y. Sun
Summary The aim of this study was to investigate the anorectic mechanism of calcitonin gene-related peptide (CGRP) in rats. Intraperitoneal injection of CGRP (50 ,g/kg) resulted in decline (p < 0.05) in the food intake of rats at 0.5, 1, 2 and 4 h in comparison with saline control. Compared with saline-treated group, the levels of hypothalamic 3,,5,-cyclic adenosine monophosphate (cAMP) and plasma glucagon were increased (p < 0.05) in CGRP-treated group, but insulin level was decreased (p < 0.05). No significant changes (p > 0.05) in the plasma leptin were observed between two treatment groups. Calcitonin gene-related peptide injection down regulated (p < 0.05) both neuropeptide Y (NPY) and melanin-concentrating hormone (MCH) genes at mRNA levels, but up regulated (p < 0.05) the expression of cholecystokinin (CCK) gene. The correlations analysis showed that food intake was negatively correlated (p < 0.05) with CCK mRNA, cAMP and glucagon levels. Moreover, there existed negative correlations (p < 0.05) between MCH mRNA and glucagon levels, and positive correlations (p < 0.05) between insulin and leptin levels. The results showed that cAMP acting as the second messenger may play a vital role in the anorectic effects of CGRP. Calcitonin gene-related peptide could stimulate anorexigenic neuropeptides (i.e. CCK) and/or inhibit orexigenic neuropeptides (i.e. NPY and MCH) expression, and ultimately suppressed food intake that was functionally coupled to cAMP/PKA pathway activation. [source]


Sensitivity of Galanin- and Melanin-Concentrating Hormone-Containing Neurones to Nutritional Status: An Immunohistochemical Study in the Ovariectomized Ewe

JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2003
E. Chaillou
Abstract The sensitivities of galanin and melanin-concentrating hormone (MCH) neuronal systems to nutrition are poorly understood in sheep compared to rodents. The aim of this study was to describe the changes in the numbers of galanin and MCH neurones in ovariectomized ewes submitted to different nutritional levels. In the first experiment, ewes were fed ad libitum or food deprived for 24 h. In the second experiment, two groups of ewes were fed at maintenance level (group 100) or undernourished (group 40) for 167 days, after which one-half of each group was killed or refed ad libitum (group 100R and 40R) for 4 days. The MCH neuronal population located in the lateral hypothalamic area was not affected by these nutritional changes. Long-term undernutrition enhanced the number of galanin neurones located in the infundibular nucleus and the dorsal hypothalamic area (DHA), refeeding resulted in an increase of neurones in the DHA and preoptic area, but short-term starvation had no effect on any galanin subpopulations. Our data suggest that the sensitivity of MCH neuronal populations to nutrition in sheep differs from that of rodents. Various populations of galanin-containing neurones differ in sensitivity in ewes subjected to long undernutrition and refeeding but not to short starvation. [source]


Chemical Coding of GABAB Receptor-Immunoreactive Neurones in Hypothalamic Regions Regulating Body Weight

JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2003
M. Bäckberg
Abstract ,-aminobutyric acid (GABA) interacts with hypothalamic neuronal pathways regulating feeding behaviour. GABA has been reported to stimulate feeding via both ionotropic GABAA and metabotropic GABAB receptors. The functional form of the GABAB receptor is a heterodimer consisting of GABAB receptor-1 (GABABR1) and GABAB receptor-2 (GABABR2) proteins. Within the heterodimer, the GABA-binding site is localized to GABABR1. In the present study, we used an antiserum to the GABABR1 protein in order to investigate the cellular localization of GABABR1-immunoreactive neurones in discrete hypothalamic regions implicated in the control of body weight. The colocalization of GABABR1 immunoreactivity with different chemical messengers that regulate food intake was analysed. GABABR1-immunoreactive cell bodies were found in the periventricular, paraventricular (PVN), supraoptic, arcuate, ventromedial hypothalamic, dorsomedial hypothalamic, tuberomammillary nuclei and lateral hypothalamic area (LHA). Direct double-labelling showed that glutamic acid decarboxylase (GAD)-positive terminals were in close contact with GABABR1-containing cell bodies located in all these regions. In the ventromedial part of the arcuate nucleus, GABABR1-immunoreactive cell bodies were found to contain neuropeptide Y, agouti-related peptide (AGRP) and GAD. In the ventrolateral part of the arcuate nucleus, GABABR1-immunoreactive cell bodies were shown to contain pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript. In the LHA, GABABR1 immunoreactivity was present in both melanin-concentrating hormone- and orexin-containing cell populations. In the tuberomammillary nucleus, GABABR1-immunoreactive cell bodies expressed histidine decarboxylase, a marker for histamine-containing neurones. In addition, GAD and AGRP were found to be colocalized in some nerve terminals surrounding GABABR1-immunoreactive cell bodies in the parvocellular part of the PVN. The results may provide a morphological basis for the understanding of how GABA regulates the hypothalamic control of food intake and body weight via GABAB receptors. [source]


Central Administration of Orexin A Suppresses Basal and Domperidone Stimulated Plasma Prolactin

JOURNAL OF NEUROENDOCRINOLOGY, Issue 12 2000
S. H. Russell
Abstract Orexin immunoreactive fibres are abundant in the hypothalamus suggesting a neuroendocrine regulatory role. Intracerebroventricular (ICV) administration of orexin A suppressed plasma prolactin in male rats by 71% at 20 min post-injection and 83% at 90 min post-injection (P < 0.005 vs saline at both time points). To investigate whether this effect was through the tuberoinfundibular dopaminergic (TIDA) system, a supra-maximal dose of domperidone, a dopamine receptor antagonist, was injected intraperitoneally (i.p.) prior to ICV injection of orexin A. ICV orexin A significantly suppressed domperidone (9 mg/kg)-stimulated plasma prolactin levels, by up to 40% (i.p. domperidone + ICV orexin A 3 nmol 34.5 ± 7.4 ng/ml and i.p. domperidone + ICV orexin A 20 nmol 43.5 ± 4.3 ng/ml, both P < 0.005 vs i.p. domperidone + ICV saline 57.9 ± 2.7 ng/ml). Orexin A, 100 nM, significantly stimulated release of neurotensin, vasoactive intestinal polypeptide, somatostatin, corticotropin releasing factor and luteinizing hormone releasing hormone, but had no effect on release of dopamine, thyrotropin releasing hormone (TRH), vasopressin or melanin-concentrating hormone from hypothalamic explants in vitro. Orexin A did not alter basal or TRH stimulated prolactin release in dispersed pituitary cells harvested from male rats. The data suggest that ICV administration of orexin A suppresses plasma prolactin in part through a pathway independent of the dopaminergic system. [source]


Galanin Knockout Mice Show Disturbances in Ethanol Consumption and Expression of Hypothalamic Peptides That Stimulate Ethanol Intake

ALCOHOLISM, Issue 1 2010
Olga Karatayev
Background:, There is growing evidence suggesting that hypothalamic galanin (GAL), which is known to stimulate intake of a fat-rich diet, has a role in promoting the consumption of ethanol. The present study further examined this possibility in GAL knockout (GALKO) mice. Methods:, Two groups of female and male GALKO mice, compared to wild-type (WT) controls, were trained to voluntarily drink increasing concentrations of ethanol, while maintained on lab chow and water. They were examined in terms of their daily ethanol intake and preference, acute consumption of a high-fat diet, preference for flavored solutions, and expression of different peptides shown to stimulate ethanol intake. Results:, In the GALKO mice compared to WT, the results revealed: (i) a 35 to 45% decrease in ethanol intake and preference, which was evident only at the highest (15%) ethanol concentration, was stronger in female than in male mice, and was seen with comparisons to littermate as well as nonlittermate WT mice; (ii) a 48% decrease in acute intake of a fat-rich diet, again stronger in female than male mice; (iii) no difference in consumption of sucrose or quinine solutions in preference tests; (iv) a total loss of GAL mRNA in the hypothalamic paraventricular nucleus (PVN) of female and male mice; and (v) a gender-specific change in mRNA levels of peptides in the perifornical lateral hypothalamus (PFLH), orexin and melanin-concentrating hormone, which are known to stimulate ethanol and food intake and were markedly decreased in females while increased in males. Conclusions:, These results provide strong support for a physiological role of PVN GAL in stimulating the consumption of ethanol, as well as a fat-rich diet. Ablation of the GAL gene produced a behavioral phenotype, particularly in females, which may reflect the functional relationship of galanin to ovarian steroids. It also altered the peptides in the PFLH, with their reduced expression contributing to the larger behavioral effects observed in females and their increased expression attenuating these effects in males. [source]


Characterization of CART neurons in the rat and human hypothalamus

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2001
Carol F. Elias
Cocaine- and amphetamine-regulated transcript (CART) is a recently described neuropeptide widely expressed in the rat brain. CART mRNA and peptides are found in hypothalamic sites such as the paraventricular nucleus (PVH), the supraoptic nucleus (SON), the lateral hypothalamic area (LHA), the dorsomedial nucleus of the hypothalamus (DMH), the arcuate nucleus (Arc), the periventricular nucleus (Pe), and the ventral premammillary nucleus (PMV). Intracerebroventricular administration of recombinant CART peptide decreases food intake and CART mRNA levels in the Arc are regulated by leptin. Leptin administration induces Fos expression in hypothalamic CART neurons in the PVH, the DMH, the Arc, and the PMV. In the current study, we used double label in situ hybridization histochemistry to investigate the potential direct action of leptin on hypothalamic CART neurons and to define the chemical identity of the hypothalamic CART neurons in the rat brain. We found that CART neurons in the Arc, DMH, and PMV express long form leptin-receptor mRNA, and the suppressor of cytokine signaling-3 (SOCS-3) mRNA after an acute dose of intravenous leptin. We also found that CART neurons in the parvicellular PVH, in the DMH and in the posterior Pe coexpress thyrotropin-releasing hormone (TRH) mRNA. CART neurons in the magnocellular PVH and in the SON coexpress dynorphin (DYN), and CART cell bodies in the LHA and in the posterior Pe coexpress melanin-concentrating hormone (MCH) and glutamic acid decarboxylase (GAD-67) mRNA. In the Arc, a few CART neurons coexpress neurotensin (NT) mRNA. In addition, we examined the distribution of CART immunoreactivity in the human hypothalamus. We found CART cell bodies in the PVH, in the SON, in the LHA, in the Arc (infundibular nucleus) and in the DMH. We also observed CART fibers throughout the hypothalamus, in the bed nucleus of the stria terminalis, and in the amygdala. Our results indicate that leptin directly acts on CART neurons in distinct nuclei of the rat hypothalamus. Furthermore, hypothalamic CART neurons coexpress neuropeptides involved in energy homeostasis, including MCH, TRH, DYN, and NT. The distribution of CART cell bodies and fibers in the human hypothalamus indicates that CART may also play a role in the regulation of energy homeostasis in humans. J. Comp. Neurol. 432:1,19, 2001. © 2001 Wiley-Liss, Inc. [source]