Meiotic Recombination (meiotic + recombination)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Genetic Analyses of Meiotic Recombination in Arabidopsis

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2007
Asela J. Wijeratne
Abstract Meiosis is essential for sexual reproduction and recombination is a critical step required for normal meiosis. Understanding the underlying molecular mechanisms that regulate recombination is important for medical, agricultural and ecological reasons. Readily available molecular and cytological tools make Arabidopsis an excellent system to study meiosis. Here we review recent developments in molecular genetic analyses on meiotic recombination. These include studies on plant homologs of yeast and animal genes, as well as novel genes that were first identified in plants. The characterizations of these genes have demonstrated essential functions from the initiation of recombination by double-strand breaks to repair of such breaks, from the formation of double-Holliday junctions to possible resolution of these junctions, both of which are critical for crossover formation. The recent advances have ushered a new era in plant meiosis, in which the combination of genetics, genomics, and molecular cytology can uncover important gene functions. [source]


From meiosis to postmeiotic events: Homologous recombination is obligatory but flexible

FEBS JOURNAL, Issue 3 2010
Lóránt Székvölgyi
Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role. [source]


From meiosis to postmeiotic events: Uncovering the molecular roles of the meiosis-specific recombinase Dmc1

FEBS JOURNAL, Issue 3 2010
Wataru Kagawa
In meiosis, the accurate segregation of maternal and paternal chromosomes is accomplished by homologous recombination. A central player in meiotic recombination is the Dmc1 recombinase, a member of the RecA/Rad51 recombinase superfamily, which is widely conserved from viruses to humans. Dmc1 is a meiosis-specific protein that functions with the ubiquitously expressed homolog, the Rad51 recombinase, which is essential for both mitotic and meiotic recombination. Since its discovery, it has been speculated that Dmc1 is important for unique aspects of meiotic recombination. Understanding the distinctive properties of Dmc1, namely, the features that distinguish it from Rad51, will further clarify the mechanisms of meiotic recombination. Recent structural, biochemical, and genetic findings are now revealing the molecular mechanisms of Dmc1-mediated homologous recombination and its regulation by various recombination mediators. [source]


Interaction between Lim15/Dmc1 and the homologue of the large subunit of CAF-1 , a molecular link between recombination and chromatin assembly during meiosis

FEBS JOURNAL, Issue 9 2008
Satomi Ishii
In eukaryotes, meiosis leads to genetically variable gametes through recombination between homologous chromosomes of maternal and paternal origin. Chromatin organization following meiotic recombination is critical to ensure the correct segregation of homologous chromosomes into gametes. However, the mechanism of chromatin organization after meiotic recombination is unknown. In this study we report that the meiosis-specific recombinase Lim15/Dmc1 interacts with the homologue of the largest subunit of chromatin assembly factor 1 (CAF-1) in the basidiomycete Coprinopsis cinerea (Coprinus cinereus). Using C. cinerea LIM15/DMC1 (CcLIM15) as the bait in a yeast two-hybrid screen, we have isolated the C. cinerea homologue of Cac1, the largest subunit of CAF-1 in Saccharomyces cerevisiae, and named it C. cinerea Cac1-like (CcCac1L). Two-hybrid assays confirmed that CcCac1L binds CcLim15 in vivo. ,-Galactosidase assays revealed that the N-terminus of CcCac1L preferentially interacts with CcLim15. Co-immunoprecipitation experiments showed that these proteins also interact in the crude extract of meiotic cells. Furthermore, we demonstrate that, during meiosis, CcCac1L interacts with proliferating cell nuclear antigen (PCNA), a component of the DNA synthesis machinery recently reported as an interacting partner of Lim15/Dmc1. Taken together, these results suggest a novel role of the CAF-1,PCNA complex in meiotic events. We propose that the CAF-1,PCNA complex modulates chromatin assembly following meiotic recombination. [source]


VDE-initiated intein homing in Saccharomyces cerevisiae proceeds in a meiotic recombination-like manner

GENES TO CELLS, Issue 7 2003
Tomoyuki Fukuda
Background: Inteins and group I introns found in prokaryotic and eukaryotic organisms occasionally behave as mobile genetic elements. During meiosis of the yeast Saccharomyces cerevisiae, the site-specific endonuclease encoded by VMA1 intein, VDE, triggers a single double-strand break (DSB) at an inteinless allele, leading to VMA1 intein homing. Besides the accumulating information on the in vitro activity of VDE, very little has been known about the molecular mechanism of intein homing in yeast nucleus. Results: We developed an assay to detect the product of VMA1 intein homing in yeast genome. We analysed mutant phenotypes of RecA homologs, Rad51p and Dmc1p, and their interacting proteins, Rad54p and Tid1p, and found that they all play critical roles in intein inheritance. The absence of DSB end processing proteins, Sae2p and those in the Mre11-Rad50-Xrs2 complex, also causes partial reduction in homing efficiency. As with meiotic recombination, crossover events are frequently observed during intein homing. We also observed that the absence of premeiotic DNA replication caused by hydroxyurea (HU) or clb5, clb6, mutation reduces VDE-mediated DSBs. Conclusion: The repairing system working in intein homing shares molecular machinery with meiotic recombination induced by Spo11p. Moreover, like Spo11p-induced DNA cleavage, premeiotic DNA replication is a prerequisite for a VDE-induced DSB. VMA1 intein thus utilizes several host factors involved in meiotic and recombinational processes to spread its genetic information and guarantee its progeny through establishment of a parasitic relationship with the organism. [source]


Epigenetic gambling and epigenetic drift as an antagonistic pleiotropic mechanism of aging

AGING CELL, Issue 6 2009
George M. Martin
Summary Generations of biogerontologists have been puzzled by the marked intraspecific variations in lifespan of their experimental model organisms despite all efforts to control both genotype and environment. The most cogent example comes from life table studies of wild-type Caenorhabditis elegans when grown in suspension cultures using axenic media. While nuclear and mitochondrial somatic mutations and ,thermodynamic noise' likely contribute to such lifespan variegations, I raise an additional hypothetical mechanism, one that may have evolved as a mechanism of phenotypic variation which could have preceded the evolution of meiotic recombination. I suggest that random changes in cellular gene expression (cellular epigenetic gambling or bet hedging) evolved as an adaptive mechanism to ensure survival of members of a group in the face of unpredictable environmental challenges. Once activated, it could lead to progressive epigenetic variegation (epigenetic drift) amongst all members of the group. Thus, while particular patterns of gene expression would be adaptive for a subset of reproductive individuals within a population early in life, once initiated, I predict that continued epigenetic drift will result in variable onsets and patterns of pathophysiology , perhaps yet another example of antagonistic pleiotropic gene action in the genesis of senescent phenotypes. The weakness of this hypothesis is that we do not currently have a plausible molecular mechanism for the putative genetic ,randomizer' of epigenetic expression, particularly one whose ,setting' may be responsive to the ecology in which a given species evolves. I offer experimental approaches, however, to search for the elusive epigenetic gambler(s). [source]


Genetic Analyses of Meiotic Recombination in Arabidopsis

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2007
Asela J. Wijeratne
Abstract Meiosis is essential for sexual reproduction and recombination is a critical step required for normal meiosis. Understanding the underlying molecular mechanisms that regulate recombination is important for medical, agricultural and ecological reasons. Readily available molecular and cytological tools make Arabidopsis an excellent system to study meiosis. Here we review recent developments in molecular genetic analyses on meiotic recombination. These include studies on plant homologs of yeast and animal genes, as well as novel genes that were first identified in plants. The characterizations of these genes have demonstrated essential functions from the initiation of recombination by double-strand breaks to repair of such breaks, from the formation of double-Holliday junctions to possible resolution of these junctions, both of which are critical for crossover formation. The recent advances have ushered a new era in plant meiosis, in which the combination of genetics, genomics, and molecular cytology can uncover important gene functions. [source]


Isolation and characterization of the RAD54 gene from Arabidopsis thaliana

THE PLANT JOURNAL, Issue 6 2006
Keishi Osakabe
Summary Homologous recombination (HR) is an essential process in maintaining genome integrity and variability. In eukaryotes, the Rad52 epistasis group proteins are involved in meiotic recombination and/or HR repair. One member of this group, Rad54, belongs to the SWI2/SNF2 family of DNA-stimulated ATPases. Recent studies indicate that Rad54 has important functions in HR, both as a chromatin remodelling factor and as a mediator of the Rad51 nucleoprotein filament. Despite the importance of Rad54 in HR, no study of Rad54 from plants has yet been performed. Here, we cloned the full-length AtRAD54 cDNA sequence; an open reading frame of 910 amino acids encodes a protein with a predicted molecular mass of 101.9 kDa. Western blotting analysis showed that the AtRad54 protein was indeed expressed as a protein of approximately 110 kDa in Arabidopsis. The predicted protein sequence of AtRAD54 contains seven helicase domains, which are conserved in all other Rad54s. Yeast two-hybrid analysis revealed an interaction between Arabidopsis Rad51 and Rad54. AtRAD54 transcripts were found in all tissues examined, with the highest levels of expression in flower buds. Expression of AtRAD54 was induced by , -irradiation. A T-DNA insertion mutant of AtRAD54 devoid of full-length AtRAD54 expression was viable and fertile; however, it showed increased sensitivity to , -irradiation and the cross-linking reagent cisplatin. In addition, the efficiency of somatic HR in the mutant plants was reduced relative to that in wild-type plants. Our findings point to an important role for Rad54 in HR repair in higher plants. [source]


Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense

THE PLANT JOURNAL, Issue 4 2006
Carina Barth
Summary In Arabidopsis and other Brassicaceae, the enzyme myrosinase (, -thioglucoside glucohydrolase, TGG) degrades glucosinolates to produce toxins that deter herbivory. A broadly applicable selection for meiotic recombination between tightly linked T-DNA insertions was developed to generate Arabidopsis tgg1tgg2 double mutants and study myrosinase function. Glucosinolate breakdown in crushed leaves of tgg1 or tgg2 single mutants was comparable to that of wild-type, indicating redundant enzyme function. In contrast, leaf extracts of tgg1tgg2 double mutants had undetectable myrosinase activity in vitro, and damage-induced breakdown of endogenous glucosinolates was apparently absent for aliphatic and greatly slowed for indole glucosinolates. Maturing leaves of myrosinase mutants had significantly increased glucosinolate levels. However, developmental decreases in glucosinolate content during senescence and germination were unaffected, showing that these processes occur independently of TGG1 and TGG2. Insect herbivores with different host plant preferences and feeding styles varied in their responses to myrosinase mutations. Weight gain of two Lepidoptera, the generalist Trichoplusia ni and the facultative Solanaceae-specialist Manduca sexta, was significantly increased on tgg1tgg2 double mutants. Two crucifer-specialist Lepidoptera had differing responses. Whereas Plutella xylostella was unaffected by myrosinase mutations, Pieris rapae performed better on wild-type, perhaps due to reduced feeding stimulants in tgg1tgg2 mutants. Reproduction of two Homoptera, Myzus persicae and Brevicoryne brassicae, was unaffected by myrosinase mutations. [source]


Immunocytological analysis of meiotic recombination in the American mink (Mustela vison)

ANIMAL GENETICS, Issue 2 2009
P. M. Borodin
Summary Using immunolocalization of MLH1, a mismatch repair protein that marks crossover sites along synaptonemal complexes, we estimated the total length of the genetic map, the recombination rate and crossover distribution in the American mink (Mustela vison). We prepared spreads from 130 spermatocytes of five male minks and mapped 3320 MLH1 foci along 1820 bivalents. The total recombination length of the male mink genome, based on the mean number of MLH1 foci for all chromosomes, was 1327 cM. The overall recombination rate was estimated to be 0.48 cM/Mb. In all bivalents, we observed prominent peaks of MLH1 foci near the distal ends and a paucity of them near the centromeres. This indicates that genes located at proximal regions of the chromosomes should display much tighter genetic linkage than physically equidistant markers located near the telomeres. [source]


Synaptonemal complex formation: where does it start?

BIOESSAYS, Issue 10 2005
Kiersten A. Henderson
The synaptonemal complex is a prominent, evolutionarily conserved feature of meiotic prophase. The assembly of this structure is closely linked to meiotic recombination. A recent study in budding yeast reveals an unexpected role in centromere pairing for a protein component of the synaptonemal complex, Zip1.1 These findings have implications for synaptonemal complex formation. BioEssays 27:995,998, 2005. © 2005 Wiley Periodicals, Inc. [source]


Haplotype analysis and age estimation of the 113insR CDKN2A founder mutation in Swedish melanoma families

GENES, CHROMOSOMES AND CANCER, Issue 2 2001
Jamileh Hashemi
Germline mutations in the CDKN2A tumor suppressor gene located on 9p21 have been linked to development of melanomas in some families. A germline 3-bp insertion in exon 2 of CDKN2A, leading to an extra arginine at codon 113 (113insR), has been identified in 17 Swedish melanoma families. Analysis of 10 microsatellite markers, spanning approximately 1 Mbp in the 9p21 region, showed that all families share a common allele for at least one of the markers closest to the CDKN2A gene, suggesting that the 113insR mutation is an ancestral founder mutation. Differences in the segregating haplotypes, due to meiotic recombinations and/or mutations in the short-tandem-repeat markers, were analyzed further to estimate the age of the mutation. Statistical analysis using a maximum likelihood approach indicated that the mutation arose 98 generations (90% confidence interval: 52,167 generations), or approximately 2,000 years, ago. Thus, 113insR would be expected to have a more widespread geographic distribution in European and North American regions with ancestral connections to Sweden. Alternatively, CDKN2A may lie in a recombination hot spot region, as suggested by the many meiotic recombinations in this narrow ,1-cM region on 9p21. © 2001 Wiley-Liss, Inc. [source]