MEF Cells (mef + cell)

Distribution by Scientific Domains


Selected Abstracts


The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity

GENES TO CELLS, Issue 12 2004
Kazuhiro Sakamaki
FADD is an adaptor protein that transmits apoptotic signals from death receptors such as Fas to downstream initiator caspases in mammals. We have identified and characterized the Xenopus orthologue of mammalian FADD (xFADD). xFADD contains both a death effector domain (DED) and a death domain (DD) that are structurally homologous to those of mammalian FADD. We observed xFADD binding to Xenopus caspase-8 and caspase-10 as well as to human caspase-8 and Fas through interactions with their homophilic DED and DD domains. When over-expressed, xFADD was also able to induce apoptosis in wild-type mouse embryonic fibroblasts (MEF), but not in caspase-8-deficient MEF cells. In contrast, DED-deficient xFADD (xFADDdn) acted as a dominant-negative mutant and prevented Fas-mediated apoptosis in mammalian cell lines. These results indicate that xFADD transmits apoptotic signals from Fas to caspase-8. Furthermore, we found that transgenic animals expressing xFADD in the developing heart or eye under the control of tissue-specific promoters show abnormal phenotypes. Taken together, these results suggest that xFADD can substitute functionally for its mammalian homologue in death receptor-mediated apoptosis, and we suggest that xFADD functions as a pro-apoptotic adaptor molecule in frogs. Thus, the structural and functional similarities between xFADD and mammalian FADD provide evidence that the apoptotic pathways are evolutionally conserved across vertebrate species. [source]


Mouse embryonic fibroblast cells from transgenic mice overexpressing tNOX exhibit an altered growth and drug response phenotype

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2007
Kader Yagiz
Abstract Mouse embryonic fibroblast (MEF) cells prepared from transgenic mice overexpressing a cancer-specific and growth-related cell surface NADH oxidase with protein disulfide-thiol interchange activity grew at rates approximately twice those of wild-type embryonic fibroblast cells. Growth of transgenic MEF cells overexpressing tNOX was inhibited by low concentrations of the green tea catechin (,)-epigallocatechin-3-gallate (EGCg) or the synthetic isoflavene phenoxodiol. Both are putative tNOX-targeted inhibitors with anti-cancer activity. With both EGCg and phenoxodiol, growth inhibition was followed after about 48 h by apoptosis. Growth of wild-type mouse fibroblast cells from the same strain was unaffected by EGCg and phenoxodiol and neither compound induced apoptosis even at concentrations 100,1,000-fold higher than those that resulted in apoptotic death in the transgenic MEF cells. The findings validate earlier reports of evidence for tNOX presence as contributing to unregulated growth of cancer cells as well as the previous identification of the tNOX protein as the molecular target for the anti-cancer activities attributed to both EGCg and phenoxodiol. The expression of tNOX emerges as both necessary and sufficient to account for the cancer cell-specific growth inhibitions by both EGCg and phenoxodiol. J. Cell. Biochem. 101: 295,306, 2007. © 2006 Wiley-Liss, Inc. [source]


Activation of ERK signaling upon alternative protease nexin-1 internalization mediated by syndecan-1

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2006
Xiaobiao Li
Abstract Protease nexin-1 (PN-1), an inhibitor of serine proteases, contributes to tissue homeostasis and influences the behavior of some tumor cells. The internalization of PN-1 protease complexes is considered to be mediated by the low-density lipoprotein receptor related protein 1 (LRP1). In this study, both wild-type and LRP1,/, mouse embryonic fibroblasts (MEF) were shown to internalize PN-1. Receptor associated protein (RAP) interfered with PN-1 uptake only in wild-type MEF cells, indicating that another receptor mediates PN-1 uptake in the absence of LRP1. In LRP1,/, MEF cells, inhibitor sensitivity and kinetic values (t1/2 at 45 min) of PN-1 uptake showed a similarity to syndecan-1-mediated endocytosis. In these cells, PN-1 uptake was increased by overexpression of full-length syndecan-1 and decreased by RNA interference targeting this proteoglycan. Most important, in contrast to PKA activation known to be triggered by LRP1-mediated internalization, our study shows that syndecan-1-mediated internalization of PN-1 stimulated the Ras-ERK signaling pathway. J. Cell. Biochem. 99: 936,951, 2006. © 2006 Wiley-Liss, Inc. [source]


Role of c-Fos/JunD in protecting stress-induced cell death

CELL PROLIFERATION, Issue 3 2007
H. Zhou
The purpose of the current study was to investigate the role of c-Fos and JunD in stress-induced cell death. Materials and methods: We exposed cultured primary mouse embryonic fibroblasts (MEF) to ultraviolet light (UV-C) or hydrogen peroxide (H2O2). Induction of c-Fos and JunD and activation of MAPK/ERK1/2 signalling in the presence or absence of a MAPK inhibitor were analyzed by western blotting. Activation of AP-1 transcription factors was detected by the electrophoretic mobility shift assay and immunoprecipitation. Cell death was measured by changes in caspase 3 activities and nuclear morphology. Effects of c-Fos and JunD expression on cell death were investigated by transfection. Results: We found that the exposure of cultured primary MEF cells to UV or H2O2 caused a significant increase in c-Fos and JunD protein levels. In addition, these two proteins formed complexes with each other and contributed to activation of AP-1 transcription complexes. More importantly, under both stress conditions, overexpression of JunD alone or overexpression of both c-Fos and JunD reduced caspase 3 activity and cell death. At the same time, UV irradiation activated the MAPK/ERK1/2 signalling pathway. The suppression of MEK1/ERK1/2 activation inhibited UV-induced expression of c-Fos and JunD and increased caspase 3 activity and cell death. Conclusion: Our results suggest that both UV and H2O2 induce the activation of c-Fos/JunD AP-1 complexes resulting in the prevention of cell death. Moreover, UV irradiation-induced increases in c-Fos/JunD expression in primary MEF cells are mediated through the activation of the MAPK/ERK1/2 signalling pathway. [source]