Medullary Chromaffin Cells (medullary + chromaffin_cell)

Distribution by Scientific Domains

Kinds of Medullary Chromaffin Cells

  • adrenal medullary chromaffin cell


  • Selected Abstracts


    Oxygen-sensing pathway for SK channels in the ovine adrenal medulla

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2005
    Damien J Keating
    SUMMARY 1.,The intracellular pathways that modulate the opening of oxygen-sensitive ion channels during periods of hypoxia are poorly understood. Different tissues appear to use either NADPH oxidase or a rotenone-sensitive mechanism as an oxygen sensor. The aim of the present study was to identify the oxygen-sensing pathway in the oxygen-sensitive sheep adrenal medullary chromaffin cell (AMCC). 2.,The whole-cell patch-clamp technique was used to measure K+ currents in dissociated adult ovine chromaffin cells as well as SK channel currents expressed in the H4IIE cell line. 3.,Diphenyliodonium, an inhibitor of NADPH oxidase, had no effect on the hypoxia-evoked closure of K+ channels in primary AMCC, whereas the mitochondrial inhibitor rotenone abolished the hypoxia-evoked response. Both these compounds significantly reduced K+ current amplitude under normoxic conditions. 4.,One possible mechanism through which the oxygen sensor may modulate K+ channel activity is by altering the redox state of the cell. In sheep AMCC, altering the redox state by the addition of H2O2 to the extracellular solution increased K+ conductance. 5.,The oxygen-sensitive K+ (Ko2) channels in sheep chromaffin cells are from the SK family and the whole-cell conductance of cells expressing mouse SK2 or SK3, but not human SK1, was increased by H2O2 and decreased by the reducing agent dithiothreitol. 6.,These studies show that, in sheep AMCC, Ko2 channels are modulated via a rotenone-sensitive mechanism and that alteration of the cellular redox state mimics the change produced by alterations in Po2. In a heterologous expression system, SK2 and SK3 channels, the channels that initiate hypoxia-evoked changes in AMCC function, are modulated appropriately by changes in cellular redox state. [source]


    Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cells

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2010
    Pei-Chun Wu
    J. Neurochem. (2010) 112, 1210,1222. Abstract In the present study, we characterized the Ca2+ responses and secretions induced by various secretagogues in mouse chromaffin cells. Activation of the acetylcholine receptor (AChR) by carbachol induced a transient intracellular Ca2+ concentration ([Ca2+]i) increase followed by two phases of [Ca2+]i decay and a burst of exocytic events. The contribution of the subtypes of AChRs to carbachol-induced responses was examined. Based on the results obtained by stimulating the cells with the nicotinic receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, high K+ and the effects of thapsigargin, it appears that activation of nAChRs induces an extracellular Ca2+ influx, which in turn activate Ca2+ -induced Ca2+ release via the ryanodine receptors. Muscarine, a muscarinic receptor (mAChRs) agonist, was found to induce [Ca2+]i oscillation and sustained catecholamine release, possibly by activation of both the receptor- and store-operated Ca2+ entry pathways. The RT-PCR results showed that mouse chromaffin cells are equipped with messages for multiple subtypes of AChRs, ryanodine receptors and all known components of the receptor- and store-operated Ca2+ entry. Furthermore, results obtained by directly monitoring endoplasmic reticulum (ER) and mitochondrial Ca2+ concentration and by disabling mitochondrial Ca2+ uptake suggest that the ER acts as a Ca2+ source, while the mitochondria acts as a Ca2+ sink. Our results show that both nAChRs and mAChRs contribute to the initial carbachol-induced [Ca2+]i increase which is further enhanced by the Ca2+ released from the ER mediated by Ca2+ -induced Ca2+ release and mAChR activation. This information on the Ca2+ signaling pathways should lay a good foundation for future studies using mouse chromaffin cells as a model system. [source]


    Reduction of Allodynia by Intrathecal Transplantation of Microencapsulated Porcine Chromaffin Cells

    ARTIFICIAL ORGANS, Issue 3 2009
    Yu Mi Kim
    Abstract Bovine chromaffin cells (BCCs) are well known to have analgesic effect to reduce acute or chronic pain when transplanted in the subarachnoid space and have been considered as an alternative therapy for pain management. However, due to recent concerns over risks associated with prion transmission, porcine tissue is considered to be an alternate xenogeneic source for clinical use. In the present study, we investigated whether microencapsulated porcine adrenal medullary chromaffin cells (PCCs) also have analgesic effect to reduce allodynia caused by neuropathic pain in chronic constriction injury model of rat. PCCs were isolated from a porcine adrenal medulla and then microencapsulated with alginate and poly. In in vitro tests, the microencapsulated PCCs were investigated whether they have an ability to release catecholamines responding to nicotine stimulation. The levels of catecholamines released from the microencapsulated PCCs were significantly higher than from microencapsulated BCCs. In addition, the microencapsulated PCCs released catecholamines and met-enkephalin responding to cerebral spinal fluid (CSF) retrieved from a neuropathic pain model. In in vivo tests, implantation of microencapsulated PCCs reduced both mechanical and cold allodynia in chronic constriction injury model of a rat whereas the microencapsulated BCCs reduced only cold allodynia under the same conditions. The injection of antagonist of opioid peptides reversed the reduction of cold allodynia in microencapsulated PCC-received animal. The levels of catecholamines in the CSF of rats after implantation of microencapsulated PCCs were significantly higher than in the control group. These data suggest that microencapsulated PCCs may be another effective source for the treatment of neuropathic pain. [source]


    Immunoisolated Chromaffin Cells Implanted Into the Subarachnoid Space of Rats Reduce Cold Allodynia in a Model of Neuropathic Pain: A Novel Application of Microencapsulation Technology

    ARTIFICIAL ORGANS, Issue 12 2004
    Yu Mi Kim
    Abstract:, Intrathecal transplants of adrenal medullary chromaffin cells relieve chronic pain by secreting catecholamines, opioids, and other neuroactive substances. Recently, macrocapsules with semipermeable membranes were used to isolate immunologically xenogenic chromaffin cells, but the poor viability in vivo of the encapsulated chromaffin cells limited the usefulness of this method. In this study, we used a novel method of encapsulation to increase the viability of chromaffin cells. We found that microencapsulated chromaffin cells that were implanted into the subarachnoid space of rats relieved cold allodynia in a model of neuropathic pain. Furthermore, microencapsulated chromaffin cells were morphologically normal and retained their functionality. These findings suggest that the intrathecal placement of microencapsulated chromaffin cells might be a useful method for treating chronic pain. [source]