Medullary Area (medullary + area)

Distribution by Scientific Domains


Selected Abstracts


Compensatory bone remodelling in moose: a study of age, sex, and cross-sectional cortical bone dimensions in moose at Isle Royale National Park

INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 5 2002
Mary Hindelang
Abstract We studied interrelationships among age, sex, and cross-sectional cortical bone dimensions using quantitative computed tomography (QCT) scans of metatarsal bones of 180 moose (Alces alces) that died in Isle Royale National Park, Michigan. As a large-bodied quadruped with demanding ecological constraints on movement and behaviour, a moose experiences different weight-bearing and mechanical stressors than humans, to whom most existing studies of mechanical adaptations of bone pertain. In moose, both sexes showed significant subperiosteal expansion and an increase in medullary area, with an overall increase in cortical bone area over time. Female moose did not exhibit cortical thinning or reduction in cross-sectional area with age, rather they showed an increase in cortical bone area with periosteal apposition exceeding endosteal resorption, similar to the males. We also found that moose undergo changes in bone geometry through remodelling of bone similar to humans, suggesting a compensatory mechanism for increasing bone strength under conditions of decline in bone mineral density with age. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences

JOURNAL OF ANATOMY, Issue 2 2005
C. David L. Thomas
Abstract This study investigated age and sex differences in patterns of porosity distribution in the midshaft of the human femur. Cross-sections were obtained from 168 individuals from a modern Australian population. The sample comprised 73 females and 95 males, aged between 20 and 97 years. Microradiographs were made of 100-µm sections and pore and bone areas were determined using image processing software. Initially the sample was divided by age: young (20,44 years), middle (45,64 years) and old (65+ years), but it was found that analysis on the basis of the ratio of medullary area to total subperiosteal area gave clearer results. The cortex was divided into three rings radially and into octants circumferentially and the porosity of each segment was calculated. Results showed that a pattern with raised porosity in the posterior and anterolateral regions, and with greater porosity in the inner parts of the cortex, becomes more pronounced with age. In males this pattern develops steadily; in females there are much greater differences between the middle and older groups than earlier in life. The patterns observed are consistent with progressive bone loss occurring along a neutral axis of the cortex where bending stress is lowest and the mechanical advantage of the bone is least. [source]


,-Arrestin2 Regulates the Differential Response of Cortical and Trabecular Bone to Intermittent PTH in Female Mice,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2005
Mary L Bouxsein PhD
Abstract Cytoplasmic arrestins regulate PTH signaling in vitro. We show that female ,-arrestin2,/, mice have decreased bone mass and altered bone architecture. The effects of intermittent PTH administration on bone microarchitecture differed in ,-arrestin2,/, and wildtype mice. These data indicate that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH at endosteal and periosteal bone surfaces. Introduction: The effects of PTH differ at endosteal and periosteal surfaces, suggesting that PTH activity in these compartments may depend on some yet unidentified mechanism(s) of regulation. The action of PTH in bone is mediated primarily by intracellular cAMP, and the cytoplasmic molecule ,-arrestin2 plays a central role in this signaling regulation. Thus, we hypothesized that arrestins would modulate the effects of PTH on bone in vivo. Materials and Methods: We used pDXA, ,CT, histomorphometry, and serum markers of bone turnover to assess the skeletal response to intermittent PTH (0, 20, 40, or 80 ,g/kg/day) in adult female mice null for ,-arrestin2 (,-arr2,/,) and wildtype (WT) littermates (7-11/group). Results and Conclusions: ,-arr2,/, mice had significantly lower total body BMD, trabecular bone volume fraction (BV/TV), and femoral cross-sectional area compared with WT. In WT females, PTH increased total body BMD, trabecular bone parameters, and cortical thickness, with a trend toward decreased midfemoral medullary area. In ,-arr2,/, mice, PTH not only improved total body BMD, trabecular bone architecture, and cortical thickness, but also dose-dependently increased femoral cross-sectional area and medullary area. Histomorphometry showed that PTH-stimulated periosteal bone formation was 2-fold higher in ,-arr2,/, compared with WT. Osteocalcin levels were significantly lower in ,-arr2,/, mice, but increased dose-dependently with PTH in both ,-arr2,/, and WT. In contrast, whereas the resorption marker TRACP5B increased dose-dependently in WT, 20-80 ,g/kg/day of PTH was equipotent with regard to stimulation of TRACP5B in ,-arr2,/,. In summary, ,-arrestin2 plays an important role in bone mass acquisition and remodeling. In estrogen-replete female mice, the ability of intermittent PTH to stimulate periosteal bone apposition and endosteal resorption is inhibited by arrestins. We therefore infer that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH on cancellous and cortical bone. [source]


Cell-autonomous role of EphB2 and EphB3 receptors in the thymic epithelial cell organization

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2009
Javier García-Ceca
Abstract The role of EphB2 and EphB3 in the organization of thymic epithelial cells has been studied in EphB-deficient fetal thymus lobes grafted under the kidney capsule of WT mice. The deficient lobes, as compared with WT ones, showed altered distribution of medullary areas, shortening of medullary epithelial cell processes and presence of K5,K8, areas. EphB2 and EphB3 expressed on thymic epithelial cells play an autonomous role in their organization. The relevance of Eph/ephrinB forward and reverse signals for this process was evaluated in grafted fetal thymus lobes from mice expressing a truncated EphB2 receptor capable of activating reverse, but not forward, signaling. These deficient lobes showed important alterations of the thymic epithelial organization as compared with the grafted WT lobes, but a less severe phenotype than the grafted EphB2-deficient thymus lobes, which confirms the relevance of EphB2 forward signal for the thymic epithelial organization but, also, a role of the reverse signaling in determining the final epithelial phenotype. [source]