Home About us Contact | |||
Mechanosensory System (mechanosensory + system)
Selected AbstractsThe vesicular integral protein-like gene is essential for development of a mechanosensory system in zebrafishDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2008Mabel Chong Abstract The zebrafish hi472 mutation is caused by a retroviral insertion into the vesicular integral protein-like gene, or zVIPL, a poorly studied lectin implicated in endoplasmic reticulum (ER)-Golgi trafficking. A mutation in the shorter isoform of zVIPL (zVIPL-s) results in a reduction of mechanosensitivity and consequent loss of escape behavior. Here we show that motoneurons and hindbrain reticulospinal neurons, which normally integrate mechanosensory inputs, failed to fire in response to tactile stimuli in hi472 larvae, suggesting a perturbation in sensory function. The hi472 mutant larvae in fact suffered from a severe loss of functional neuromasts of the lateral line mechanosensory system, a reduction of zVIPL labeling in support cells, and a reduction or even a complete loss of hair cells in neuromasts. The Delta-Notch signaling pathway is implicated in cellular differentiation of neuromasts, and we observed an increase in Notch expression in neuromasts of hi472 mutant larvae. Treatment of hi472 mutant larvae with DAPT, an inhibitor of Notch signaling, or overexpression of the Notch ligand deltaB in hi472 mutant blastocysts produced partial rescue of the morphological defects and of the startle response behavior. We conclude that zVIPL-s is a necessary component of Delta-Notch signaling during neuromast development in the lateral line mechanosensory system. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source] Dissolved copper triggers cell death in the peripheral mechanosensory system of larval fishENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2006Tiffany L. Linbo Abstract Dissolved copper is an increasingly common non,point source contaminant in urban and urbanizing watersheds. In the present study, we investigated the sublethal effects of dissolved copper on the peripheral mechanosensory system, or lateral line, of larval zebrafish (Danio rerio). Zebrafish larvae were exposed to copper (0,65 ,g/L), and the cytotoxic responses of individual lateral line receptor neurons were examined using a combination of in vivo fluorescence imaging, confocal microscopy, scanning electron microscopy, and conventional histology. Dissolved copper triggered a dose-dependent loss of neurons in identified lateral line neuromasts at concentrations ,20 ,g/L. The onset of cell death in the larval mechanosensory system was rapid (<1 h). When copper-exposed zebrafish were transferred to clean water, the lateral line regenerated over the course of 2 d. In contrast, the lateral line of larvae exposed continuously to dissolved copper (50 ,g/L) for 3 d did not recover. Collectively, these results show that peripheral mechanosensory neurons are vulnerable to the neurotoxic effects of copper. Consequently, dissolved copper in non-point source storm-water runoff has the potential to interfere with rheotaxis, schooling, predator avoidance, and other mechanosensory-mediated behaviors that are important for the migration and survival of fish. [source] |