Mechanism Involving (mechanism + involving)

Distribution by Scientific Domains


Selected Abstracts


Environmental Toxicants May Modulate Osteoblast Differentiation by a Mechanism Involving the Aryl Hydrocarbon Receptor,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2007
Elizabeth P Ryan
Abstract The AHR mediates many of the toxicological effects of aromatic hydrocarbons. We show that AHR expression in osteoblasts parallels the induction of early bone-specific genes involved in maturation. The AHR may not only mediate the effects of toxicants, but with an as yet unidentified ligand, be involved in the differentiation pathways of osteoblasts. Introduction: Metabolic bone diseases arise as a result of an imbalance in bone cell activities. Recent evidence suggests that environmental toxicants may be contributing factors altering these activities. One candidate molecule implicated in mediating the toxic effects of exogenous compounds is the aryl hydrocarbon receptor (AHR). Materials and Methods: Osteoblasts isolated from neonatal rat calvaria were analyzed for AHR expression by quantitative PCR, Western blot, and immunohistochemistry. In addition, AHR activation was evaluated by electromobility gel shift assay and fluorescence microscopy. Results: Our findings showed AHR expression in mature osteoblasts in vivo. The pattern of AHR expression peaks after alkaline phosphatase and before induction of osteocalcin. We first show that AHR functions as a transactivating receptor in osteoblasts, as evidenced by its ligand-dependent migration to the nucleus and its association with known dioxin response elements. AHR activation by 2,3,7,8-tetrachlorodibenzo -p -dioxin (TCDD) mediated the induction of cytochrome p450 1A1 and cycloxygenase-2 protein levels. This effect could be inhibited by the potent AHR antagonist, 3,4 methoxynitroflavone. Furthermore, lead treatment of osteoblasts upregulates the expression of AHR mRNA and protein levels, supporting a novel mechanism whereby lead in the skeleton may increase the sensitivity of bone cells to toxicant exposure. Conclusions: These data imply that the AHR mediates the effects of aromatic toxicants on bone and that AHR expression is regulated during osteoblast differentiation. [source]


Alpha-melanocyte-stimulating hormone attenuates behavioral effects of corticotropin-releasing factor in isolated guinea pig pups

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 5 2009
Patricia A. Schiml-Webb
Abstract During a 3-hr period of social isolation in a novel environment, guinea pig pups exhibit an initial active phase of behavioral responsiveness, characterized primarily by vocalizing, which is then followed by a stage of passive responsiveness in which pups display a distinctive crouch, eye-closing, and extensive piloerection. Prior treatment of pups with alpha-melanocyte-stimulating hormone (,-MSH) reduces each of the passive behaviors. The onset of passive responding during separation can be accelerated with peripheral injection of corticotropin-releasing factor (CRF). To examine whether CRF produces its effects through a mechanism similar to that of prolonged separation, we examined the effect of administering ,-MSH to pups injected with CRF. As expected, CRF markedly enhanced passive responding during a 60-min period of separation. ,-MSH delivered by either intracerebroventricular infusion or intraperitoneal injection significantly reduced each of the passive behavioral responses without significantly affecting active behavior. These findings, together with previous results indicating that it is the anti-inflammatory property of ,-MSH that is responsible for its behavioral effects during prolonged separation, suggest that peripheral CRF speeds the induction of passive responding through a mechanism involving enhanced proinflammatory activity. © 2009 Wiley Periodicals, Inc. Dev Psychobiol 51: 399,407, 2009. [source]


Efficient DNA Cleavage Induced by Copper(II) Complexes of Hydrolysis Derivatives of 2,4,6-Tri(2-pyridyl)-1,3,5-triazine in the Presence of Reducing Agents

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 6 2007
Joaquín Borrás
Abstract The reaction of 2,4,6-tri(pyridyl)-1,3,5-triazine (ptz) and copper(II) salts in dmf/water (1:1) results in the hydrolysis of ptz and formation of the anions bis(2-pyridylcarbonyl)amide (ptO2,) and bis(2-pyridylamine)amide (ptN2,), which are found in the complexes [Cu(ptN2)(OAc)]·3H2O (1), [Cu(ptO2)(OAc)(H2O)]·H2O (2), [Cu(ptN2)(for)]·3H2O (3) (for = formate), [Cu(ptO2)(for)(H2O)] (4), [Cu(ptO2)(benz)]·H2O (5) (benz = benzoate), and [Cu(ptO2)F(H2O)]2·3H2O (6). This report includes the chemical and spectroscopic characterization of all these complexes along with the crystal structures of 4,6. The coordination spheres of CuII in 4 and 5 are best described as distorted tetragonal square pyramidal for the former and distorted square planar for the latter. The crystal structure of 6 shows the presence of two discrete monomeric [Cu(ptO2)F(H2O)] entities in the crystallographic asymmetric unit in which both copper(II) ions have a distorted square-pyramidal coordination geometry. The binding of the complexes to DNA has been investigated with the aid of viscosity and thermal denaturation studies, both of which indicate that the interaction is probably due to the outer-sphere mechanism. The ability of the compounds to cleave DNA has also been tested. Efficient oxidative cleavage was observed in the presence of a mild reducing agent (ascorbate) and dioxygen. Mechanistic studies with reactive oxygen species (ROS) scavengers confirm that hydrogen peroxide, the hydroxyl radical, singlet oxygen-like species, and the superoxide anion are necessary diffusible intermediates in the scission process. A mechanism involving either the Fenton or theHaber,Weiss reaction plus the formation of copper oxene species is proposed for the DNA cleavage mediated by these compounds.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Human airway trypsin-like protease induces amphiregulin release through a mechanism involving protease-activated receptor-2-mediated ERK activation and TNF ,-converting enzyme activity in airway epithelial cells

FEBS JOURNAL, Issue 24 2005
Manabu Chokki
Human airway trypsin-like protease (HAT), a serine protease found in the sputum of patients with chronic airway diseases, is an agonist of protease-activated receptor-2 (PAR-2). Previous results have shown that HAT enhances the release of amphiregulin (AR); further, it causes MUC5AC gene expression through the AR-epidermal growth factor receptor pathway in the airway epithelial cell line NCI-H292. In this study, the mechanisms by which HAT-induced AR release can occur were investigated. HAT-induced AR gene expression was mediated by extracellular signal-regulated kinase (ERK) pathway, as pretreatment of cells with ERK pathway inhibitor eliminated the effect of HAT on AR mRNA. Both HAT and PAR-2 agonist peptide (PAR-2 AP) induced ERK phosphorylation; further, desensitization of PAR-2 with a brief exposure of cells to PAR-2 AP resulted in inhibition of HAT-induced ERK phosphorylation, suggesting that HAT activates ERK through PAR-2. Moreover, PAR-2 AP induced AR gene expression subsequent to protein production in the cellular fraction through the ERK pathway indicating that PAR-2-mediated activation of ERK is essential for HAT-induced AR production. However, in contrast to HAT, PAR-2 AP could not cause AR release into extracellular space; it appears that activation of PAR-2 is not sufficient for HAT-induced AR release. Finally, HAT-induced AR release was eliminated by blockade of tumour necrosis factor ,-converting enzyme (TACE) by the TAPI-1 and RNA interference, suggesting that TACE activity is necessary for HAT-induced AR release. These observations show that HAT induces AR production through the PAR-2 mediated ERK pathway, and then causes AR release by a TACE-dependent mechanism. [source]


Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and sezary syndrome)

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2004
Arnaud Cirée
Abstract Interleukin-17 (IL-17) is a proinflammatory cytokine mainly produced by activated CD4+ CD45RO T cells. In mice, we have demonstrated that, depending on the model, IL-17 may act as a tumor growth-promoting or -inhibiting factor. In order to address the relevance of these models in human tumors, we look for the natural expression and activity of IL-17 in mycosis fungoides (MF) and Sezary syndrome (SS). These cutaneous T-cell lymphomas were selected because they are usually CD3+ CD4+ CD45RO+, a phenotype similar to nontransformed T cells producing IL-17. We show that in vitro activated malignant T cells derived from MF or SS patients express IL-17 mRNA and secrete this cytokine. However, IL-17 does not act in vitro as a growth factor for MF or SS cell lines. In addition, 5 out of 10 MF/SS biopsies expressed IL-17 mRNA, while this cytokine was not detected in normal skin. IL-17 was not observed in the biopsies derived from 2 patients initially identified as MF, whereas an upregulation of this cytokine was clearly demonstrated during progression of the disease in these patients. An association between IL-17 expression and polymorphonuclear neutrophil infiltration was also recorded in this group of MF/SS patients. A more detailed analysis of 2 patients with a pustular form of MF and SS revealed that IL-17 may participate in the recruitment of polymorphonuclear neutrophils via a paracrine mechanism involving keratinocyte-released IL-8. This study is the first report demonstrating that some human tumor cells could express IL-17, a cytokine that represents an early event in the development of the inflammatory reaction within the tumor microenvironment, a process that may influence tumor phenotype and growth. © 2004 Wiley-Liss, Inc. [source]


Bradykinin potentiates cytokine-induced prostaglandin biosynthesis in osteoblasts by enhanced expression of cyclooxygenase 2, resulting in increased RANKL expression

ARTHRITIS & RHEUMATISM, Issue 3 2007
Anna Bernhold Brechter
Objective Bradykinin (BK) stimulates bone resorption in vitro and synergistically potentiates interleukin-1 (IL-1),induced bone resorption and prostaglandin (PG) formation, suggesting that kinins are important in inflammation-induced bone loss. The present study was undertaken to study 1) the role of the kinin B1 and B2 receptors in the synergistic interaction with IL-1 and tumor necrosis factor , (TNF,), 2) the molecular mechanisms involved in synergistic enhancement of PG formation, and 3) the effects of kinins on cytokine-induced expression of RANKL, RANK, and osteoprotegerin (OPG) (the latter being crucial molecules in osteoclast differentiation). Methods Formation of PGs, expression of enzymes involved in arachidonic acid metabolism, and expression of RANKL, RANK, and OPG were assessed in the human osteoblastic cell line MG-63 and in mouse calvarial bones. The role of NF-,B and MAP kinases was studied using pharmacologic inhibitors. Results PGE2 formation and cyclooxygenase 2 (COX-2) protein expression were induced by IL-1, and potentiated by kinins with affinity for the B1 or B2 receptors, resulting in PGE2 -dependent enhancement of RANKL. The enhancements of PGE2 formation and COX-2 were markedly decreased by inhibition of p38 and JNK MAP kinases, whereas inhibition of NF-,B resulted in abolishment of the PGE2 response with only slight inhibition of COX-2. Conclusion Kinin B1 and B2 receptors synergistically potentiate IL-1, and TNF,-induced PG biosynthesis in osteoblasts by a mechanism involving increased levels of COX-2, resulting in increased RANKL. The synergistic stimulation is dependent on NF-,B and MAP kinases. These mechanisms might help to explain the enhanced bone resorption associated with inflammatory disorders, including that in rheumatoid arthritis. [source]