Mechanical Wounding (mechanical + wounding)

Distribution by Scientific Domains


Selected Abstracts


Plant biological warfare: thorns inject pathogenic bacteria into herbivores

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2007
Malka Halpern
Summary Thorns, spines and prickles are among the rich arsenal of antiherbivore defence mechanisms that plants have evolved. Many of these thorns are aposematic, that is, marked by various types of warning coloration. This coloration was recently proposed to deter large herbivores. Yet, the mechanical defence provided by thorns against large herbivores might be only the tip of the iceberg in a much more complicated story. Here we present evidence that thorns harbour an array of pathogenic bacteria that are much more dangerous to herbivores than the painful mechanical wounding by the thorns. Pathogenic bacteria like Clostridium perfringens, the causative agent of the life-threatening gas gangrene, and others, were isolated and identified from date palm (with green-yellow-black aposematic spines) and common hawthorn (with red aposematic thorns). These thorn-inhabiting bacteria have a considerable potential role in antiherbivory, and may have uniquely contributed to the common evolution of aposematism (warning coloration) in thorny plants. [source]


NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco's defense response

FEBS JOURNAL, Issue 19 2010
Hao Huang
A cDNA library from tobacco inoculated with Rhizoctonia solani was constructed, and several cDNA fragments were identified by differential hybridization screening. One cDNA clone that was dramatically repressed, NtKTI1, was confirmed as a member of the Kunitz plant proteinase inhibitor family. RT-PCR analysis revealed that NtKTI1 was constitutively expressed throughout the whole plant and preferentially expressed in the roots and stems. Furthermore, RT-PCR analysis showed that NtKTI1 expression was repressed after R. solani inoculation, mechanical wounding and salicylic acid treatment, but was unaffected by methyl jasmonate, abscisic acid and NaCl treatment. In vitro assays showed that NtKTI1 exerted prominent antifungal activity towards R. solani and moderate antifungal activity against Rhizopus nigricans and Phytophthora parasitica var. nicotianae. Bioassays of transgenic tobacco demonstrated that overexpression of NtKTI1 enhanced significantly the resistance of tobacco against R. solani, and the antisense lines exhibited higher susceptibility than control lines towards the phytopathogen. Taken together, these studies suggest that NtKTI1 may be a functional Kunitz trypsin inhibitor with antifungal activity against several important phytopathogens in the tobacco defense response. [source]


Effects of systemic potato response to wounding and jasmonate on the aphid Macrosiphum euphorbiae (Sternorryncha: Aphididae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 7 2010
L. Brunissen
Abstract Plant induced responses are activated by multiple biotic and abiotic stresses, and may affect the interactions between a plant and phytophagous insects. The objective of this work was to evaluate the effects of different stresses inflicted to potato plants (Solanum tuberosum) on the potato aphid (Macrosiphum euphorbiae). Abiotic wounding, biotic wounding by Leptinotarsa decemlineata and treatment with volatile methyl jasmonate (MeJA) were evaluated with regard to the orientation behaviour, the feeding behaviour and the development of the potato aphids. Dual-choice olfactometry showed that plants treated with MeJA lost their attractiveness for the potato aphids, while both abiotic and biotic wounding did not alter the orientation of aphids. Electropenetrography revealed that the feeding behaviour of aphids was only slightly disturbed by a previous L. decemlineata wounding, while it was highly disturbed by mechanical wounding and MeJA treatment. Aphid nymph survival was reduced on mechanically wounded plants, the pre-reproductive period was lengthened and the fecundity reduced on plants treated with MeJA. Our results bring new information about the effects of various stresses inflicted to S. tuberosum on M. euphorbiae. We showed that wounding and MeJA treatment induced an antixenosis resistance in potato plants against M. euphorbiae, which may influence aphid colonization processes. [source]


A Novel Mitogen-Activated Protein Kinase Gene in Maize (Zea mays), ZmMPK3, is Involved in Response to Diverse Environmental Cues

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2010
Jinxiang Wang
In search for components of mitogen-activated protein kinase (MAPK) cascades in maize (Zea mays) involved in response to abscisic acid (ABA) stimulus, a novel MAPK gene, ZmMPK3, from ABA-treated maize leaves cDNA was isolated and characterized. The full length of the ZmMPK3 gene is 1 520 bp and encodes a 376 amino acid protein with a predicted molecular mass of 43.5 kD and a pI of 5.83. ZmMPK3 contains all 11 MAPK conserved subdomains and the phosphorylation motif TEY. Amino acid sequence alignment revealed that ZmMPK3 shared high identity with group-A MAPK in plants. A time course (30,360 min) experiment using a variety of signal molecules and stresses revealed that the transcripts level of ZmMPK3 accumulated markedly and rapidly when maize seedlings were subjected to exogenous signaling molecules: ABA, H2O2, jasmonic acid and salicylic acid, various abiotic stimuli such as cold, drought, ultraviolet light, salinity, heavy metal and mechanical wounding. Its transcription was also found to be tissue-specific regulated. Here, we show that ABA and H2O2 induced a significant increase in the ZmMPK3 activity using immunoprecipitation and in-gel kinase assay. Furthermore, the results showed that the ZmMPK3 protein is localized mainly to the nucleus. These results suggest that the ZmMPK3 may play an important role in response to environmental stresses. [source]


Root growth dynamics of Nicotiana attenuata seedlings are affected by simulated herbivore attack

PLANT CELL & ENVIRONMENT, Issue 10 2007
GRÉGOIRE M. HUMMEL
ABSTRACT Many studies demonstrate resource-based trade-offs between growth and defence on a large timescale. Yet, the short-term dynamics of this growth reaction are still completely unclear, making it difficult to explain growth-defence trade-offs mechanistically. In this study, image-based non-destructive methods were used to quantify root growth reactions happening within hours following simulated herbivore attack. The induction of wound reactions in Nicotiana attenuata in the seedling stage led to transiently decreased root growth rates. Application of the oral secretion of the specialist herbivore Manduca sexta to the leaves led to a transient decrease in root growth that was more pronounced than if a mere mechanical wounding was imposed. Root growth reduction was more pronounced than leaf growth reduction. When fatty acid,amino acid conjugates (FACs) were applied to wounds, root growth reduction occurred in the same intensity as when oral secretion was applied. Timing of the transient growth reduction coincided with endogenous bursts of jasmonate (JA) and ethylene emissions reported in literature. Simulation of a wound response by applying methyl jasmonate (MeJA) led to more prolonged negative effects on root growth. Increased nicotine concentrations, trichome lengths and densities were observed within 72 h in seedlings that were treated with MeJA or that were mechanically wounded. Overall, these reactions indicate that even in a very early developmental stage, the diversion of plant metabolism from primary (growth-sustaining) to secondary (defence-related) metabolism can cause profound alterations of plant growth performance. [source]