Mechanical Stress (mechanical + stress)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Protection of Human Genomic DNA from Mechanical Stress by Reversible Folding Transition

CHEMBIOCHEM, Issue 3 2010
Lucia Cinque
Be compact, be protected: We show that reversible folding transition allows the protection of human genomic DNA from mechanical stress. By using molecular combing, we established that folded DNA molecules can undergo strong mechanical stress without fragmentation and perfectly recover their initial size and conformation after unfolding. This opens new perspectives for high-throughput DNA mapping and sequencing, large chromosomal rearrangement detection, and high-precision quantification of DNA damage. [source]


Regulation of GADD153 induced by mechanical stress in cardiomyocytes

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 11 2009
W. P. Cheng
Abstract Background, Growth arrest and DNA damage-inducible gene 153 (GADD153), an apoptosis regulated gene, increased during endoplasmic reticulum stress. However, the expression of GADD153 in cardiomyocytes under mechanical stress is little known. We aimed to investigate the regulation mechanism of GADD153 expression and apoptosis induced by mechanical stress in cardiomyocytes. Materials and methods, Aorta-caval shunt was performed in adult Sprague,Dawley rats to induce volume overload. Rat neonatal cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation, at 60 cycles min,1. Results, The increased ventricular dimension measured using echocardiography in the shunt group (n = 8) was reversed to normal by treatment with chaperon 4-phenylbutyric acid (PBA) (n = 8) at 500 mg kg,1 day,1 orally for 3 days. GADD153 protein and mRNA were up-regulated in the shunt group when compared with sham group (n = 8). Treatment with PBA reversed the protein of GADD153 to the baseline values. The TUNEL assay showed that PBA reduced the apoptosis induced by volume overload. Cyclic stretch significantly increased GADD153 protein and mRNA expression after 14 h of stretch. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA and tumour necrosis factor-, (TNF-,) antibody 30 min before stretch, reduced the induction of GADD153 protein. Stretch increased, while GADD153-Mut plasmid, SP600125 and TNF-, antibody abolished the GADD153 promoter activity induced by stretch. GADD153 mediated apoptosis induced by stretch was reversed by GADD153 siRNA, GADD153-Mut plasmid and PBA. Conclusions, Mechanical stress enhanced apoptosis and GADD153 expression in cardiomyocytes. Treatment with PBA reversed both GADD153 expression and apoptosis induced by mechanical stress in cardiomyocytes. [source]


Osterix is a key target for mechanical signals in human thoracic ligament flavum cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007
Dongwei Fan
Mechanical stress is considered to be an important factor in the progression of thoracic ossification of the ligament flavum (TOLF). To elucidate the mechanism underlying mechanical stress-induced TOLF, we investigated the effect of stretching on cultured flavum ligament cells derived from TOLF and non-TOLF patients. We found that the mRNA expression of alkaline phosphatase (ALP), osteocalcin, Runx2, and osterix, but not that of Dlx5 and Msx2, was significantly increased by stretching in TOLF cells. In addition, the effect seems to be finely tuned by stretching-triggered activation of distinct mitogen-activated protein kinase cascades. Specifically, a p38 specific inhibitor, SB203580, significantly inhibited stretching-induced osterix expression as well as ALP activity, whereas a specific inhibitor of ERK1/2, U0126, prevented stretching-induced Runx2 expression. We showed that overexpression of osterix resulted in a significant increase of ALP activity in TOLF cells, and osterix-specific RNAi completely abrogated the stretching-induced ALP activity, indicating that osterix plays a key role in stretching-stimulated osteogenic effect in TOLF cells. These results suggest that mechanical stress plays important roles in the progression of TOLF through induction of osteogenic differentiation of TOLF cells, and our findings support that osterix functions as a molecular link between mechanostressing and osteogenic differentiation. J. Cell. Physiol. 211: 577,584, 2007. © 2007 Wiley-Liss, Inc. [source]


Mitochondrial displacements in response to nanomechanical forces

JOURNAL OF MOLECULAR RECOGNITION, Issue 1 2008
Yaron R. Silberberg
Abstract Mechanical stress affects and regulates many aspects of the cell, including morphology, growth, differentiation, gene expression and apoptosis. In this study we show how mechanical stress perturbs the intracellular structures of the cell and induces mechanical responses. In order to correlate mechanical perturbations to cellular responses, we used a combined fluorescence-atomic force microscope (AFM) to produce well defined nanomechanical perturbations of 10,nN while simultaneously tracking the real-time motion of fluorescently labelled mitochondria in live cells. The spatial displacement of the organelles in response to applied loads demonstrates the highly dynamic mechanical response of mitochondria in fibroblast cells. The average displacement of all mitochondrial structures analysed showed an increase of ,40%, post-perturbation (,160,nm in comparison to basal displacements of ,110,nm). These results show that local forces can produce organelle displacements at locations far from the initial point of contact (up to ,40,µm). In order to examine the role of the cytoskeleton in force transmission and its effect on mitochondrial displacements, both the actin and microtubule cytoskeleton were disrupted using Cytochalasin D and Nocodazole, respectively. Our results show that there is no significant change in mitochondrial displacement following indentation after such treatments. These results demonstrate the role of the cytoskeleton in force transmission through the cell and on mitochondrial displacements. In addition, it is suggested that care must be taken when performing mechanical experiments on living cells with the AFM, as these local mechanical perturbations may have significant structural and even biochemical effects on the cell. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Crystal mismatched layers in pentagonal nanorods and nanoparticles

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 2 2010
L. M. Dorogin
Abstract Pentagonal nanorods (PNRs) and nanoparticles (PNPs) covered by mismatched shell layers are theoretically investigated. Mechanical stresses and elastic energies of such objects are calculated analytically and analyzed in the framework of linear isotropic elasticity. Difference between elastic modules of core and shell is taken into account. The threshold radiuses as the minimal radiuses of PNR and PNP for which the formation of the shell layer is energetically favorable are found. The threshold radius is approximately 10,nm for PNPs and 100,nm for PNRs of typical face-centered cubic (FCC) metals. The optimal magnitudes of mismatch parameter giving the maximal energy release for shelled PNRs and PNPs are determined. [source]


Single mechano-gated channels activated by mechanical deformation of acutely isolated cardiac fibroblasts from rats

ACTA PHYSIOLOGICA, Issue 3 2010
A. Kamkin
Abstract Aim:, Mechanosensitive conductances were reported in cardiac fibroblasts, but the properties of single channels mediating their mechanosensitivity remain uncharacterized. The aim of this work was to investigate single mechano-gated channels (MGCs) activated by mechanical deformations of cardiac fibroblasts. Methods:, Currents through single MGCs and mechanosensitive whole-cell currents were recorded from isolated rat atrial fibroblasts using the cell-attached and whole-cell patch-clamp configurations respectively. Defined mechanical stress was applied via the patch pipette used for the whole-cell recordings. Results:, Under resting conditions occasional short openings of two types of single MGCs with conductances of 43 and 87 pS were observed. Both types of channels displayed a linear current,voltage relationship with the reversal potential around 0 mV. Small (1 ,m) mechanical deformations affected neither single nor whole-cell mechano-gated currents. Cell compressions (2, 3 and 4 ,m) augmented the whole-cell currents and increased the frequency and duration of single channel openings. Cell stretches (2, 3 and 4 ,m) inactivated the whole-cell currents and abolished the activity of single MGCs. Gd3+ (8 ,m) blocked the whole-cell currents within 5 min. No single channel activity was observed in the cell-attached mode when Gd3+ was added to the intrapipette solution. Cytochalasin D and colchicine (100 ,m each) completely blocked both the whole-cell and single channel currents. Conclusions:, These findings show that rat atrial fibroblasts express two types of MGCs whose activity is governed by cell deformation. We conclude that fibroblasts can sense the direction of applied stress and contribute to mechano-electrical coupling in the heart. [source]


Released nucleotides amplify the cilium-dependent, flow-induced [Ca2+]i response in MDCK cells

ACTA PHYSIOLOGICA, Issue 3 2009
H. A. Praetorius
Abstract Aim:, Changes in perfusate flow produce increases in [Ca2+]i in renal epithelial cells. Cultured renal epithelia require primary cilia to sense subtle changes in flow. In perfused kidney tubules this flow response is caused by nucleotide signalling via P2Y2 receptors. It is, however, not known whether nucleotides are released by mechanical stress applied to renal primary cilia. Here we investigate whether nucleotides are released during the cilium-dependent flow response and contribute to the flow-induced, cilium-dependent [Ca2+]i signal. Methods:, MDCK cells loaded with Fluo-4-AM were observed at 37 °C in semi-open single or closed-double perfusion chambers. Results:, Our data suggest a purinergic component of the cilium-dependent flow-response: (1) ATP scavengers and P2 receptor antagonists reduced (55%) the cilium-dependent flow-response; (2) ATP added at subthreshold concentration sensitized the renal epithelia to flow changes; (3) increases in fluid flow transiently enhanced the ATP concentration in the superfusate (measured by biosensor-cells). To test if nucleotides were released in sufficient quantities to stimulate renal epithelia we used non-confluent MDCK cells without cilia as reporter cells. We confirmed that non-confluent cells do not respond to changes in fluid flow. Placing confluent, ciliated cells upstream in the in-flow path of the non-confluent cells made them responsive to fluid flow changes. This phenomenon was not observed if either non-confluent or de-ciliated confluent cells were placed upstream. The [Ca2+]i -response in the non-confluent cells with ciliated cells upstream was abolished by apyrase and suramin. Conclusion:, This suggests that subtle flow changes sensed by the primary cilium induces nucleotide release, which amplifies the epithelial [Ca2+]i -response. [source]


Regulation of GADD153 induced by mechanical stress in cardiomyocytes

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 11 2009
W. P. Cheng
Abstract Background, Growth arrest and DNA damage-inducible gene 153 (GADD153), an apoptosis regulated gene, increased during endoplasmic reticulum stress. However, the expression of GADD153 in cardiomyocytes under mechanical stress is little known. We aimed to investigate the regulation mechanism of GADD153 expression and apoptosis induced by mechanical stress in cardiomyocytes. Materials and methods, Aorta-caval shunt was performed in adult Sprague,Dawley rats to induce volume overload. Rat neonatal cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation, at 60 cycles min,1. Results, The increased ventricular dimension measured using echocardiography in the shunt group (n = 8) was reversed to normal by treatment with chaperon 4-phenylbutyric acid (PBA) (n = 8) at 500 mg kg,1 day,1 orally for 3 days. GADD153 protein and mRNA were up-regulated in the shunt group when compared with sham group (n = 8). Treatment with PBA reversed the protein of GADD153 to the baseline values. The TUNEL assay showed that PBA reduced the apoptosis induced by volume overload. Cyclic stretch significantly increased GADD153 protein and mRNA expression after 14 h of stretch. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA and tumour necrosis factor-, (TNF-,) antibody 30 min before stretch, reduced the induction of GADD153 protein. Stretch increased, while GADD153-Mut plasmid, SP600125 and TNF-, antibody abolished the GADD153 promoter activity induced by stretch. GADD153 mediated apoptosis induced by stretch was reversed by GADD153 siRNA, GADD153-Mut plasmid and PBA. Conclusions, Mechanical stress enhanced apoptosis and GADD153 expression in cardiomyocytes. Treatment with PBA reversed both GADD153 expression and apoptosis induced by mechanical stress in cardiomyocytes. [source]


New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 12 2004
G. Wolf
Abstract Although debated for many years whether haemodynamic or structural changes are more important in the development of diabetic nephropathy, it is now clear that these processes are interwoven and present two sides of one coin. On a molecular level, hyperglycaemia and proteins altered by high blood glucose such as Amadori products and advanced glycation end-products (AGEs) are key players in the development of diabetic nephropathy. Recent evidence suggests that an increase in reactive oxygen species (ROS) formation induced by high glucose-mediated activation of the mitochondrial electron-transport chain is an early event in the development of diabetic complications. A variety of growth factors and cytokines are then induced through complex signal transduction pathways involving protein kinase C, mitogen-activated protein kinases, and the transcription factor NF-,B. High glucose, AGEs, and ROS act in concert to induce growth factors and cytokines. Particularly, TGF-, is important in the development of renal hypertrophy and accumulation of extracellular matrix components. Activation of the renin-angiotensin system by high glucose, mechanical stress, and proteinuria with an increase in local formation of angiotensin II (ANG II) causes many of the pathophysiological changes associated with diabetic nephropathy. In fact, it has been shown that angiotensin II is involved in almost every pathophysiological process implicated in the development of diabetic nephropathy (haemodynamic changes, hypertrophy, extracellular matrix accumulation, growth factor/cytokine induction, ROS formation, podocyte damage, proteinuria, interstitial inflammation). Consequently, blocking these deleterious effects of ANG II is an essential part of every therapeutic regiment to prevent and treat diabetic nephropathy. Recent evidence suggests that regression of diabetic nephropathy could be achieved under certain circumstances. [source]


Mechanical stretch induces TGF-, synthesis in hepatic stellate cells

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2 2004
R. Sakata
Abstract Background, It is known that mechanical stress induces extracellular matrix via transforming growth factor-, (TGF-,) synthesis in vascular smooth muscle cells. Activated hepatic stellate cells (HSCs) are an important source of TGF-, in the liver. However, it remains unclear whether mechanical stress induces TGF-, in HSCs. The Rho small GTP-binding protein (Rho) has recently emerged as an important regulator of actin and cytoskeleton. We examined whether TGF-, is expressed in stretched HSCs and whether Rho is involved in stretch-induced TGF-, synthesis. Materials and methods, A cultured human HSC cell line, LI90, was used for this study. Hepatic stellate cells were cyclically stretched using the Flexercell® strain unit. Concentration of TGF-, in the conditioned medium was estimated by a bioassay using mink lung epithelial cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Transforming growth factor-, mRNA expression of HSCs was estimated by a reverse-transcription polymerase chain reaction. Replication-defective adenoviral vectors expressing a dominant negative type of Rho was utilized to suppress its effect on HSCs. Results, Transforming growth factor-, concentration of the conditioned media of stretched HSCs showed time-dependent increases as compared to nonstretched HSCs from 2 h to 24 h. Transforming growth factor-, mRNA expression in stretched HSCs was increased compared with that in nonstretched HSCs. Transfection of dominant negative Rho inhibited the stretch-induced TGF-, synthesis. Conclusions, Mechanical stretch enhanced TGF-, expression on mRNA and protein level in HSCs. Rho was closely related to stretch-induced TGF-, synthesis in HSCs. [source]


Monotonic and Cyclic Deformation Behaviour of the SiC Particle-Reinforced Aluminium Matrix Composite AMC225xe,

ADVANCED ENGINEERING MATERIALS, Issue 4 2010
Marek Smaga
The monotonic and cyclic deformation behaviour of the aluminium matrix composite AMC225xe , i.e., the aerospace grade aluminium alloy AA 2124 reinforced with 25,vol.-% ultrafine SiC particles , is characterised in detail on the basis of mechanical stress,strain hysteresis curves as well as temperature and electrical resistance measurements. A pronounced difference in plastic strain response is observed between tension and compression under monotonic and cyclic loading. In fully reversed stress-controlled constant amplitude tests, negative plastic mean strains developed. The cyclic deformation behaviour of AMC225xe is characterised by pronounced initial cyclic hardening. The endurance limit is reliably estimated in continuous load increase tests. In particular, electrical resistance data are used as input parameters for fatigue life calculations analogous to the Basquin equation. Microstructural details are investigated by light and scanning electron microscopy. [source]


Expression of Osterix in mechanical stress-induced osteogenic differentiation of periodontal ligament cells in vitro

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2008
Yanhong Zhao
Osterix (Osx) is an osteoblast-specific transcription factor required for the differentiation of pre-osteoblasts into functional osteoblasts. This study sought to examine the changes of Osx expression in periodontal ligament cells (PDLC) subjected to mechanical force, and to investigate whether Osx is involved in the mechanical stress-induced differentiation of PDLC. Human PDLC were exposed to centrifugal force for 1,12 h. Real-time polymerase chain reaction (PCR), western blot, and immunofluorescence assays were used to examine the mRNA and protein expression of Osx and its subcellular localization. Furthermore, PDLC were transfected with the expression vector pcDNA3.1 flag-Osx and subjected to mechanical force for 6 h. The changes in alkaline phosphatase (ALP) activity and in the expression of core-binding factor alpha1 (Cbfa1), ALP, osteopontin, bone sialoprotein, osteocalcin, and collagen I were measured. After the application of mechanical force, Osx was upregulated in a time-dependent manner at both mRNA and protein levels, and Osx protein was translocated from the cytosol into the cell nuclei. Overexpression of Osx did not affect the expression of Cbfa1, but it significantly enhanced the ALP activity and the mRNA expression of all the aforementioned osteogenic marker genes, all of which increased further under mechanical stress. These results suggest that Osx might play an important role in the mechanical stress-induced osteogenic differentiation of PDLC and therefore be involved in alveolar bone remodeling during orthodontic therapy. [source]


Electromagnetic torque of a synchronous machine during a single out-of-phase reclosing

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 4 2000
A. C. Ammari
The adoption of single-pole switching for a radial transmission line which connects large synchronous machines to the power system would submit these machines to repetitive mechanical stress. To evaluate the total mechanical stress, it is first necessary to determine the electromagnetic torque and to evaluate its transient maximum values at reclosing. In this paper, maximum values of the electromagnetic transient torque at single-pole reclosing are first computed using a simplified analytical approach. The analytical results are then validated by numerical simulations and by an experimental test on a laboratory synchronous machine. It will be shown that single-pole reclosing would be, in the worst case, as restricting as three out-of-phase synchronisation. [source]


Skin and heart: une liaison dangereuse

EXPERIMENTAL DERMATOLOGY, Issue 8 2009
Maria C. Bolling
Abstract:, Both skin and heart are subject to shear mechanical stress and need to be stress-resistant in a flexible way. The intercellular connecting structures in skin and heart, the desmosomes, that have to resist these forces show remarkable resemblance in epidermis and myocardium. Mutations in desmosomal proteins lead to inherited desmosomal cardiocutaneous syndromes (DCCS): une liaison dangereuse. This article will critically review the cutaneous and cardiac features as well as the molecular background of DCCS, such as Naxos disease and Carvajal syndrome caused by deficiencies of plakoglobin and desmoplakin respectively. In addition, potential other desmosomal gene candidates for an involvement in cardiocutaneous syndromes are considered. The skin features in these syndromes may be the hallmark for the presence of progressive and ultimately lethal cardiac disease. Knowledge of these skin features and early recognition of such a syndrome may provide opportunities to halt or slow down cardiac disease progression, treat arrhythmias and even prevent sudden death. [source]


Epidermal keratinocytes as the forefront of the sensory system

EXPERIMENTAL DERMATOLOGY, Issue 3 2007
Mitsuhiro Denda
Abstract, Various sensors that respond to physical or chemical environmental factors have been identified in the peripheral nervous system. Some of them, which respond to mechanical stress, osmotic pressure, temperature and chemical stimuli (such as pH), are also expressed in epidermal keratinocytes. Neurotransmitters and their receptors, as well as receptors that regulate the neuroendocrine system of the skin, are also present in keratinocytes. Thus, broadly speaking, epidermal keratinocytes appear to be equipped with sensing systems similar to those of the peripheral and central nervous systems. It had long been considered that only nerve C-terminals in the epidermis play a role in skin surface perception. However, building on earlier work on skin receptors and new findings introduced here, we present in this review a novel hypothesis of skin sensory perception, i.e. first, keratinocytes recognize various environmental factors, and then the information is processed and conveyed to the nervous system. [source]


A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ

FEBS JOURNAL, Issue 12 2008
Fanjie Meng
To measure mechanical stress in real time, we designed a fluorescence resonance energy transfer (FRET) cassette, denoted stFRET, which could be inserted into structural protein hosts. The probe was composed of a green fluorescence protein pair, Cerulean and Venus, linked with a stable ,-helix. We measured the FRET efficiency of the free cassette protein as a function of the length of the linker, the angles of the fluorophores, temperature and urea denaturation, and protease treatment. The linking helix was stable to 80 °C, unfolded in 8 m urea, and rapidly digested by proteases, but in all cases the fluorophores were unaffected. We modified the ,-helix linker by adding and subtracting residues to vary the angles and distance between the donor and acceptor, and assuming that the cassette was a rigid body, we calculated its geometry. We tested the strain sensitivity of stFRET by linking both ends to a rubber sheet subjected to equibiaxial stretch. FRET decreased proportionally to the substrate strain. The naked cassette expressed well in human embryonic kidney-293 cells and, surprisingly, was concentrated in the nucleus. However, when the cassette was located into host proteins such ,-actinin, nonerythrocyte spectrin and filamin A, the labeled hosts expressed well and distributed normally in cell lines such as 3T3, where they were stressed at the leading edge of migrating cells and relaxed at the trailing edge. When collagen-19 was labeled near its middle with stFRET, it expressed well in Caenorhabditis elegans, distributing similarly to hosts labeled with a terminal green fluorescent protein, and the worms behaved normally. [source]


Biophysical characterization of synthetic rhamnolipids

FEBS JOURNAL, Issue 22 2006
Jörg Howe
Synthetic rhamnolipids, derived from a natural diacylated glycolipid, RL-2,214, produced by Burkholderia (Pseudomonas) plantarii, were analyzed biophysically. Changes in the chemical structures comprised variations in the length, the stereochemistry and numbers of the lipid chains, numbers of rhamnoses, and the occurrence of charged or neutral groups. As relevant biophysical parameters, the gel (,) to liquid crystalline (,) phase behavior of the acyl chains of the rhamnoses, their three-dimensional supramolecular aggregate structure, and the ability of the compounds to intercalate into phospholipid liposomes in the absence and presence of lipopolysaccharide-binding protein were monitored. Their biological activities were examined as the ability to induce cytokines in human mononuclear cells and to induce chemiluminescence in monocytes. Depending on the particular chemical structures, the physicochemical parameters as well as the biological test systems show large variations. This relates to the acyl chain fluidity, aggregate structure, and intercalation ability, as well as the bioactivity. Most importantly, the data extend our conformational concept of endotoxicity, based on the intercalation of naturally originating amphiphilic virulence factors into membranes from immune cells. This ,endotoxin conformation', produced by amphiphilic molecules with a hydrophilic charged backbone and apolar hydrophobic moiety, and adopting inverted cubic aggregate structures, causes high mechanical stress in target immune cells on integral proteins, eventually leading to cell activation. Furthermore, biologically inactive rhamnolipids with lamellar aggregate structures antagonize the endotoxin-induced activity in a way similar to lipid A-derived antagonists. [source]


A Novel Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel,

ADVANCED MATERIALS, Issue 12 2007
T. Huang
A novel hydrogel with a new, well- defined network structure is prepared through a two-step method in which the radiation-peroxidized macromolecular microspheres act as both initiators and crosslinkers. The macromolecular microsphere composite hydrogel (see figure) can effectively dissipate applied mechanical stress and has extremely high mechanical strength. Some of the hydrogels can nearly completely recover their original shapes, even after an extremely high strain (99.7%) in compression tests. [source]


Osterix is a key target for mechanical signals in human thoracic ligament flavum cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007
Dongwei Fan
Mechanical stress is considered to be an important factor in the progression of thoracic ossification of the ligament flavum (TOLF). To elucidate the mechanism underlying mechanical stress-induced TOLF, we investigated the effect of stretching on cultured flavum ligament cells derived from TOLF and non-TOLF patients. We found that the mRNA expression of alkaline phosphatase (ALP), osteocalcin, Runx2, and osterix, but not that of Dlx5 and Msx2, was significantly increased by stretching in TOLF cells. In addition, the effect seems to be finely tuned by stretching-triggered activation of distinct mitogen-activated protein kinase cascades. Specifically, a p38 specific inhibitor, SB203580, significantly inhibited stretching-induced osterix expression as well as ALP activity, whereas a specific inhibitor of ERK1/2, U0126, prevented stretching-induced Runx2 expression. We showed that overexpression of osterix resulted in a significant increase of ALP activity in TOLF cells, and osterix-specific RNAi completely abrogated the stretching-induced ALP activity, indicating that osterix plays a key role in stretching-stimulated osteogenic effect in TOLF cells. These results suggest that mechanical stress plays important roles in the progression of TOLF through induction of osteogenic differentiation of TOLF cells, and our findings support that osterix functions as a molecular link between mechanostressing and osteogenic differentiation. J. Cell. Physiol. 211: 577,584, 2007. © 2007 Wiley-Liss, Inc. [source]


Sulphur, thiols, and disulphides in the fish epidermis, with remarks on keratinization

JOURNAL OF FISH BIOLOGY, Issue 4 2007
W. Meyer
Energy dispersive x-ray (EDX) analysis and qualitative and quantitative histochemistry were applied to study the distribution and contents of sulphur, thiols and disulphides in the epidermis of the river lamprey Lampetra fluviatilis, the lesser spotted dogfish Scyliorhinus canicula and the brown trout Salmo trutta fario. Thiols generally reacted weakly throughout the entire epidermis, whereas disulphide reactions were more distinct and differentiated. In the river lamprey, the concentrations of -S-S- groups clearly increased in the developing mucous cells from the stratum basale to the stratum superficiale; skein cells and granular cells reacted negatively to weakly. In the lesser spotted dogfish, amounts of disulphides appeared at moderate concentrations, and only goblet cells displayed a strong reaction. In the brown trout, filament cells showed low concentrations or weak reactions of disulphides, goblet cells and the most outer superficial cells stained strongly. Sulphur distribution and contents generally supported the histochemical observations in normal epidermis cells (absolute sulphur contents: 41,59 mM), only the brown trout showed high amounts of sulphur in the stratum basale (81 mM). The findings corroborate the view that there is an inverse correlation between keratinization and mucous secretion in normal fish epidermis. The sometimes distinct contents of disulphides in the outer mucous layer indicate that this system could endure higher mechanical stress than predictable from its large amounts of neutral glycoproteins. [source]


Hepatocyte dynamics in a three-dimensional rotating bioreactor

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 11 2007
Mitsuo Miyazawa
Abstract Background and Aims:, The use of an artificial liver system with extracorporeal circulation or a three-dimensional bioreactor perfused with liquid culture medium inevitably exposes hepatocytes to fluid mechanical stress (MS). The expression of liver-specific hepatocyte functions seems to be modulated by the magnitude of MS. Nonetheless, few studies have focused on the direct effects of MS on hepatocytes. We subjected hepatocytes to MS using an MS loading device and investigated the effects on the cytoskeleton and hepatocyte dynamics inside three-dimensional scaffolds by monitoring the changes in actin fiber, one of the components of the cytoskeleton. We also assessed the influence of MS on specific hepatocyte functions. Methods:, We subjected hepatocytes to MS by a rotating radial flow bioreactor (RRFB) and examined the effects by comparing the MS-loaded culture cells with cells cultured under stationary conditions without MS loading. The hepatocytes (1 × 106/cm3) were seeded on gauze without collagen coating and examined to determine morphological changes after 60 h incubation. Actin filaments in samples from the MS-loaded hepatocyte culture were stained by fluorescein isothiocyanate-labeled phalloidin. Results:, Hepatocyte aggregation was observed in the MS-loaded culture, but not in the unloaded stationary culture. Better albumin products were observed in the MS-loaded group than in the stationary culture group at all measurement points. Actin filaments extended toward the scaffold after the start of MS loading incubation and polymerized around the hepatocytes. The hepatocyte aggregation eventually advanced to the formation of spheroids. Conclusion:, These results suggest that MS-induced polymerization of actin filaments stimulate hepatocyte aggregation and thereby improve hepatocyte-specific function. [source]


Update on Bioabsorbable Stents: From Bench to Clinical

JOURNAL OF INTERVENTIONAL CARDIOLOGY, Issue 5 2006
F.A.C.C., RON WAKSMAN M.D.
Permanent metallic stents are associated with limitations such as continued mechanical stress, transfer to the tissue, and continued biological interaction with the surrounding tissue. They are also associated with late stent thrombosis and artifacts when non-invasive technologies such as MRI and MSCT are used. The potential advantages of bioabsorbable polymeric or metallic stents are to leave no stent behind, they are fully compatible with MRI and MSCT imaging, and are not associated with late stent thrombosis. This review covers the different stent programs as they move from bench to bed and clinical trials. Bioabsorbable stents are considered the next frontier of stenting and we will discuss their potential to fulfill this promise in interventional cardiology. [source]


Cardiovascular magnetic resonance reveals similar damage to the heart of patients with becker and limb-girdle muscular dystrophy but no cardiac symptoms

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2009
Ali Yilmaz MD
Abstract Cardiac involvement in patients with a sarcoglycanopathy (limb-girdle muscular dystrophy) has been described previously; however, this is the first cardiovascular magnetic resonance (CMR) study in such a patient demonstrating an interesting pattern of myocardial damage using late gadolinium enhancement (LGE) imaging. Moreover, the wall motion abnormality and the subepicardial pattern of LGE in this patient with a sarcoglycanopathy is in agreement with the findings in another patient with Becker muscular dystrophy. The predominance of LGE in the subepicardial layers of the left ventricular inferolateral wall suggests that such a myocardial damage pattern represents a nonspecific cardiac phenotype in response to exaggerated mechanical stress in this region, at least in patients with a sarcoglycanopathy or dystrophinopathy. J. Magn. Reson. Imaging 2009;30:876,877. © 2009 Wiley-Liss, Inc. [source]


Mitochondrial displacements in response to nanomechanical forces

JOURNAL OF MOLECULAR RECOGNITION, Issue 1 2008
Yaron R. Silberberg
Abstract Mechanical stress affects and regulates many aspects of the cell, including morphology, growth, differentiation, gene expression and apoptosis. In this study we show how mechanical stress perturbs the intracellular structures of the cell and induces mechanical responses. In order to correlate mechanical perturbations to cellular responses, we used a combined fluorescence-atomic force microscope (AFM) to produce well defined nanomechanical perturbations of 10,nN while simultaneously tracking the real-time motion of fluorescently labelled mitochondria in live cells. The spatial displacement of the organelles in response to applied loads demonstrates the highly dynamic mechanical response of mitochondria in fibroblast cells. The average displacement of all mitochondrial structures analysed showed an increase of ,40%, post-perturbation (,160,nm in comparison to basal displacements of ,110,nm). These results show that local forces can produce organelle displacements at locations far from the initial point of contact (up to ,40,µm). In order to examine the role of the cytoskeleton in force transmission and its effect on mitochondrial displacements, both the actin and microtubule cytoskeleton were disrupted using Cytochalasin D and Nocodazole, respectively. Our results show that there is no significant change in mitochondrial displacement following indentation after such treatments. These results demonstrate the role of the cytoskeleton in force transmission through the cell and on mitochondrial displacements. In addition, it is suggested that care must be taken when performing mechanical experiments on living cells with the AFM, as these local mechanical perturbations may have significant structural and even biochemical effects on the cell. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effect of dynamic loading on solute transport in soft gels implication for drug delivery

AICHE JOURNAL, Issue 3 2008
F. Urciuolo
Abstract Solute transport through soft gels and tissues is intimately coupled to mechanical stress and deformation of the macromolecular network. The aim of this study was to investigate the effect of periodic mechanical stimuli upon solute transport through agarose gels at different concentrations. For this purpose it was experimentally evaluated the materials parameters that govern the coupling between elasto-dynamic and solute transport: hydraulic conductivity (K), elastic modulus (HA), and macromolecular diffusivity (Dg) along with their strain dependence behavior. Mechanical activated solute transport simulation was carried out in order to elucidate the role of amplitude and frequency of soliciting mechanical stimuli on mass kinetics release. Results show that mechanical loading affects the release of macromolecules from a gel in a frequency and strain dependent manner. These findings pave the way for novel strategies for the design and engineering of smart drug delivery devices with transport mechanisms triggered by mechanical stimuli. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source]


Morphological and molecular changes in denture-supporting tissues under persistent mechanical stress in rats

JOURNAL OF ORAL REHABILITATION, Issue 12 2008
M. TSURUOKA
Summary, The purpose of this study was to determine the effects of mechanical compression on the palatal mucosa using an experimental palatal base. The palatal base was either pressed onto (stress group) or not pressed onto (fit group) rat palatal mucosa. Blood flow was measured and the animals were sacrificed 6,72 h later for analysis. The expression of heat shock protein 70 (HSP70), vascular endothelial growth factor (VEGF) and proliferation cell nuclear antigen (PCNA) was characterized by immunohistochemical staining. For morphometric analysis, connective tissues were divided into bone side and epithelial side tissues. The ratio of PCNA-positive cells (PCNA score) was calculated, and the expressions of mRNA encoding HSP70 and VEGF was evaluated. Whereas blood flow in the stress group showed ischaemia, none was found in the fit group. Proliferation cell nuclear antigen scores on the bone side were higher than on the epithelial side in the stress group (P < 0·05). Heat shock protein 70- and VEGF-positive cells were observed under compression conditions, particularly in the periosteum. In the stress group, the expressions of mRNA encoding HSP70 and VEGF were highest at 12 h (P < 0·05). These results suggest that mechanical compression of the palatal plate induces ischaemia, and that cells in the underlying denture-supporting tissue, which includes the periosteum, synthesize HSP70 and VEGF to maintain homeostasis under these conditions. [source]


Changes of articular cartilage after immobilization in a rat knee contracture model

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2009
Yoshihiro Hagiwara
Abstract The objective was to determine the changes of articular cartilage of the knee joint during immobilization in a rat model. The knee joints of adult male rats were immobilized at 150° of flexion using an internal fixator for 3 days, and 1, 2, 4, 8, and 16 weeks. The articular cartilage from the medial midcondylar region of the knee was obtained, divided into three areas (non-contact area, transitional area, contact area), and in each area, a degree of degeneration was evaluated by gross observation, histomorphometric grading, and measurements of thickness and number of chondrocytes. Elasticity of the articular cartilage was estimated by measuring the sound speed with use of scanning acoustic microscopy. Degeneration of the articular cartilage was mainly observed in the contact and transitional areas. Matrix staining intensity by safranin-O and number of chondrocytes were decreased in these two areas. The thickness of the articular cartilage in the non-contact and contact areas was unchanged, but it was increased in the transitional area. Decrease in sound speed was observed in the transitional area of both the femoral and tibial cartilage, indicating the softening of the articular cartilage. The changes of articular cartilage became obvious as early as 1 week after immobilization. These changes may be due to a lack of mechanical stress or a lack of joint fluid circulation during immobilization. Although we do not know the reversibility of these changes of articular cartilage, early mobilization is preferable to avoid these cartilage changes. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:236,242, 2009 [source]


Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery

JOURNAL OF PERIODONTAL RESEARCH, Issue 2 2008
H. Ikai
Background and Objective:, A study was conducted to evaluate the effects of low-intensity pulsed ultrasound on wound healing in periodontal tissues after mucoperiosteal flap surgery. Material and Methods:, Bony defects were surgically produced bilaterally at the mesial roots of the mandibular fourth premolars in four beagle dogs. The flaps were repositioned to cover the defects and sutured after scaling and planing of the root surface to remove cementum. The affected area in the experimental group was exposed to low-intensity pulsed ultrasound, daily for 20 min, for a period of 4 wk from postoperative day 1 using a probe, 13 mm in diameter. On the control side, no ultrasound was emitted from the probe placed contralaterally. After the experiment, tissue samples were dissected out and fixed in 10% formalin for histological and immunohistochemical analyses. Results:, The experimental group showed that the processes in regeneration of both cementum and mandibular bone were accelerated by low-intensity pulsed ultrasound compared with the control group. In addition, the expression level of heat shock protein 70 was higher in the gingival epithelial cells of the low-intensity pulsed ultrasound-treated tooth. Conclusion:, Our results suggest that osteoblasts, as well as cells in periodontal ligament and gingival epithelium, respond to mechanical stress loaded by low-intensity pulsed ultrasound, and that ultrasound accelerates periodontal wound healing and bone repair. [source]


Aging stimulates cyclooxygenase-2 expression and prostaglandin E2 production in human periodontal ligament cells after the application of compressive force

JOURNAL OF PERIODONTAL RESEARCH, Issue 1 2007
Kotoe Mayahara
Background and Objectives:, Some clinical studies show that alveolar crestal bone loss is higher in adults than in young patients during orthodontic treatment, but the causes of such a phenomenon have not been elucidated. It is known that prostaglandin E2 (PGE2) is a proinflammatory agent and one of the potent osteoclast-inducing factors, and is produced by human periodontal ligament cells in response to orthodontic force. The aim of this study was to investigate age-related change in the biosynthetic capacity of PGE2 and its regulatory gene, cyclooxygenase 2 (COX-2) from periodontal ligament cells in response to mechanical stress. Methods:, Compressive force of 2 g/cm2 was applied for 3,48 h to periodontal ligament cells obtained from human donors aged 9,50 years, and COX-2 mRNA expression in and PGE2 production by the periodontal ligament cells in response to the compressive force were examined. Results:, Application of a compressive force of 2 g/cm2 for 3,48 h significantly stimulated these factors in both time- and age-dependent manners. Furthermore, these increases were dramatically larger in periodontal ligament cells obtained from donors over the age of 35. Conclusions:, Periodontal ligament cells obtained from old donors have significantly greater COX-2 expression and PGE2 production in response to compressive force than those from younger donors. The turning point of aging, where significantly larger amounts of theses factors begin production, appears to be around the age of 35. These results may be positively related to the acceleration of alveolar crestal bone loss during orthodontic treatment in adult patients. [source]


Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis

JOURNAL OF PERIODONTAL RESEARCH, Issue 1 2007
R. M. S. De Araujo
Background and Objective:, Differential expression of genes in human periodontal ligament (PDL) under mechanical stress, such as orthodontic force, is thought to be involved in the remodeling of PDL cells and periodontal tissues. However, little is known about the genes expressed in PDL cells under mechanical stress. Material and Methods:, We employed microarray analysis to assess, in a comprehensive manner, the gene expression profiles in PDL cells compressed by a static force using an in vitro three-dimensional culture system. Six genes were selected and validated by quantitative real-time polymerase chain reaction analysis, consistent with the microarray data. Results:, The microarray data revealed that 108 of 30,000 genes tested were differentially expressed by mechanical force loading. Among them, 85 genes were up-regulated by mechanical stress, while 23 genes were down-regulated, judging by the thresholds of a two-fold increase/decrease compared with the controls. Thirty-two of the up-regulated and eight of the down-regulated genes, well-characterized in protein function, were involved in numerous biological processes including cell communication, cell signaling, cell cycle, stress response, and calcium release. However, several genes differentially expressed in our microarray data have not been well defined as stress-response molecules. Conclusion:, Our microarray is the first to show the gene profile in PDL cells caused by mechanical stress; however, further studies to clarify the physiological function of these molecules in PDL cells are required. [source]