Mechanical Role (mechanical + role)

Distribution by Scientific Domains


Selected Abstracts


Mechanical role of the leaf sheath in rattans

NEW PHYTOLOGIST, Issue 3 2008
S. Isnard
Summary ,,Leaf sheaths of rattans are long, tubular and persistent and unlike many self-supporting palms, extend far from the apex of the plant. The mechanical role of the leaf sheath was investigated in eight rattan species of the subfamily Calamoideae. The main objective was to analyse its influence on the mechanical architecture and contribution to the climbing habit. ,,Bending mechanical properties were measured along climbing axes before and after removal of leaf sheaths. Results were related to stem and leaf sheath geometry and mechanical properties. ,,Contribution of the leaf sheath to axial flexural rigidity was high (c. 90%) in the early stages of growth and towards the apex of older climbing axes for all climbing palms tested. Senescence and loss of the leaf sheath strongly influenced axial stiffness. A nonclimbing species, Calamus erectus, showed a different mechanical architecture. ,,Although lacking secondary growth, palms have been able to develop successful climbers with a mechanical architecture broadly analogous to, although developmentally different from, dicotyledonous lianas. The role of the leaf sheath in modulating mechanical properties during ontogeny ought not to be neglected in studies on monocotyledons, as it possibly contributed significantly to the ways in which different growth forms have evolved in the group. [source]


Role of phi cells and the endodermis under salt stress in Brassica oleracea

NEW PHYTOLOGIST, Issue 2 2009
N. Fernandez-Garcia
Summary ,,Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. ,,Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. ,,The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. ,,To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress. [source]


Fine structure of Eimer's organ in the coast mole (Scapanus orarius)

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2007
Paul D. Marasco
Abstract Eimer's organ is a small, densely innervated sensory structure found on the glabrous rhinarium of most talpid moles. This structure consists of an epidermal papilla containing a central circular column of cells associated with intraepidermal free nerve endings, Merkel cell neurite complexes, and lamellated corpuscles. The free nerve endings within the central cell column form a ring invested in the margins of the column, surrounding 1,2 fibers that pass through the center of the column. A group of small-diameter nociceptive free nerve endings that are immunoreactive for substance P surrounds this central ring of larger-diameter free nerve endings. Transmission electron microscopy revealed a high concentration of tonofibrils in the epidermal cells of the central column, suggesting they are more rigid than the surrounding keratinocytes and may play a mechanical role in transducing stimuli to the different receptor terminals. The intraepidermal free nerve endings within the central column begin to degrade 15 ,m from the base of the stratum corneum and do not appear to be active within the keratinized outer layer. The peripheral free nerve endings are structurally distinct from their counterparts in the central column and immunocytochemical double labeling with myelin basic protein and substance P indicates these afferents are unmyelinated. Merkel cell-neurite complexes and lamellated corpuscles are similar in morphology to those found in a range of other mammalian skin. Anat Rec, 2007. © 2007 Wiley-Liss, Inc. [source]


Cephalic vascular anatomy in flamingos (Phoenicopterus ruber) based on novel vascular injection and computed tomographic imaging analyses

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 10 2006
Casey M. Holliday
Abstract Head vascular anatomy of the greater (or Caribbean) flamingo (Phoenicopterus ruber) is investigated and illustrated through the use of a differential contrast, dual vascular injection technique, and high-resolution X-ray computed tomography (CT), allowing arteries and veins to be differentiated radiographically. Vessels were digitally isolated with segmentation tools and reconstructed in 3D to facilitate topographical visualization of the cephalic vascular tree. Major vessels of the temporal, orbital, pharyngeal, and encephalic regions are described and illustrated, which confirm that the general pattern of avian cephalic vasculature is evolutionarily conservative. In addition to numerous arteriovenous vascular devices, a previously undescribed, large, bilateral, paralingual cavernous sinus that excavates a large bony fossa on the medial surface of the mandible was identified. Despite the otherwise conservative vascular pattern, this paralingual sinus was found only in species of flamingo and is not known otherwise in birds. The paralingual sinus remains functionally enigmatic, but a mechanical role in association with the peculiar lingual-pumping mode of feeding in flamingos is perhaps the most likely hypothesis. Anat Rec Part A, 288A:1031,1041, 2006. © 2006 Wiley-Liss, Inc. [source]