Home About us Contact | |||
Mechanical Processes (mechanical + process)
Selected AbstractsA Stimuli-Responsive, Photoluminescent, Anthracene-Based Liquid Crystal: Emission Color Determined by Thermal and Mechanical ProcessesADVANCED FUNCTIONAL MATERIALS, Issue 12 2009Yoshimitsu Sagara Abstract Here, a photoluminescent liquid crystal that exhibits a change of emission color on the metastable,stable phase transition induced by external stimuli is prepared. A 2,6-diethynylanthracene derivative with amide groups and dendritic side chains exhibits a columnar phase on slow cooling from the isotropic phase and shows blue emission in this columnar phase. In contrast, a cubic phase is obtained by rapid cooling from the isotropic phase. In the cubic phase, the 2,6-diethynylanthracene cores form excimers, resulting in yellow emission. While the columnar phase is a stable liquid-crystalline (LC) phase, the cubic phase is a metastable LC phase. It is found that a change of the photoluminescent color from yellow to blue is observed on the cubic-columnar phase transition induced by heating or mechanical shearing for this 2,6-diethynylanthracene derivative in the cubic phase. This change of photoluminescent color is ascribed to the inhibition of excimer formation on the metastable,stable LC phase transition. [source] Foreword by the Guest Editors: Computational Chemistry of Quantum Mechanical ProcessesISRAEL JOURNAL OF CHEMISTRY, Issue 2-3 2002Eran Rabani No abstract is available for this article. [source] A Novel Process for the Manufacture of Auxetic Foams and for Their re-Conversion to Conventional Form,ADVANCED ENGINEERING MATERIALS, Issue 7 2009Joseph N. Grima Images showing the microstructure of conventional and auxetic foams produced through the traditional thermo,mechanical process and the novel chemo,mechanical process. Auxetic foams exhibit the unusual property of becoming fatter which when stretched a property which makes them superior to conventional foams in various applications ranging from smart tunable filters to vibration-proofing materials. [source] Dissecting large earthquakes in Japan: Role of arc magma and fluidsISLAND ARC, Issue 1 2010Dapeng Zhao Abstract We synthesized information from recent high-resolution tomographic studies of large crustal earthquakes which occurred in the Japanese Islands during 1995,2008. Prominent anomalies of low-velocity and high Poisson's ratio are revealed in the crust and uppermost mantle beneath the mainshock hypocenters, which may reflect arc magma and fluids that are produced by a combination of subducting slab dehydration and corner flow in the mantle wedge. Distribution of 164 crustal earthquakes (M 5.7,8.0) that occurred in Japan during 1885,2008 also shows a correlation with the distribution of low-velocity zones in the crust and uppermost mantle. A qualitative model is proposed to explain the geophysical observations recorded so far in Japan. We consider that the nucleation of a large earthquake is not entirely a mechanical process, but is closely related to the subduction dynamics and physical and chemical properties of materials in the crust and upper mantle; in particular, the arc magma and fluids. [source] MYTHICAL ,TAILS OF LOCKWOOD'ANZ JOURNAL OF SURGERY, Issue 11 2008Sophie S Nightingale The cause of testicular ectopia has long been a mystery, and over the years, many hypotheses have been suggested to explain the condition. The most famous of these hypotheses is that of the ,Tails of Lockwood'. This developed from a paper written in 1888 by Charles Barrett Lockwood. Although little evidence has ever been found to corroborate this hypothesis, it remains in many textbooks and journal articles to the present day. In the 21st century, this theory should no longer be given as the cause for ectopic testes. Current biological evidence supports a complex process of growth, by elongation and migration of the gubernaculum, rather than a simple mechanical process of testicular descent, as proposed in the 18th century. [source] A computational model for fracturing porous mediaINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2007R. Al-Khoury Abstract This paper presents a new computational model for simulating a fracturing process in a porous medium using the finite element method. Two independent numerical techniques are used for describing this process. The partition of unity method is used for describing the fracturing process, and the double porosity model is used for describing the resulting fluid flow. A key feature of the model is the coupling of these two independent numerical techniques, which provide the means for a better simulation of the involved physical and mechanical processes. The paper focuses on the numerical formulation of the model. The capability of the model is illustrated by means of numerical examples, which examine the behaviour of a 1D porous medium under different boundary conditions. The numerical results show that the very complicated physical and mechanical processes of the fracturing porous media can be simulated properly and efficiently. Copyright © 2006 John Wiley & Sons, Ltd. [source] Evolution of an accretionary complex along the north arm of the Island of Sulawesi, IndonesiaISLAND ARC, Issue 1 2004Yusuf Surachman Djajadihardja Abstract Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out-of-sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai,Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution. [source] Modeling UHMWPE wear debris generationJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2007H. Baudriller Abstract It is widely recognized that polyethylene wear debris is one of the main causes of long-term prosthesis loosening. The noxious bioreactivity associated with this debris is determined by its size, shape, and quantity. The aim of this study was to develop a numerical tool that can be used to investigate the primary polyethylene wear mechanisms involved. This model illustrates the formation of varying flow of polyethylene debris with various shapes and sizes caused by elementary mechanical processes. Instead of using the classical continuum mechanics formulation for this purpose, we used a divided materials approach to simulate debris production and release. This approach involves complex nonlinear bulk behaviors, frictional adhesive contact, and characterizes material damage as a loss of adhesion. All the associated models were validated with various benchmark tests. The examples given show the ability of the numerical model to generate debris of various shapes and sizes such as those observed in implant retrieval studies. Most of wear mechanisms such as abrasion, adhesion, and the shearing off of micro-asperities can be described using this approach. Furthermore, it could be applied to study the effects of friction couples, macroscopic geometries, and material processing (e.g. irradiation) on wear. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2007 [source] Borehole deformation measurements and internal structure of some rock glaciers in SwitzerlandPERMAFROST AND PERIGLACIAL PROCESSES, Issue 2 2002Lukas Arenson Abstract In order to understand the mechanical processes that influence the deformation patterns of active rock glaciers, information about local horizontal and vertical deformations as well as knowledge of the internal structure and the temperature distribution is necessary. Results from borehole deformation measurements of three sites in the Swiss Alps show that despite different internal structures, similar phenomena can be observed. In contrast to temperate glaciers, permafrost within rock glaciers has distinct shear zones where horizontal and vertical differential movements are concentrated. In addition, a reduction in volume can be caused by compressive flow due to the presence of air voids within the permafrost. The flow velocity depends on the temperature, the surface and bedrock slopes of the rock glacier, and the composition of the ice-rich frozen ground. Within degrading permafrost, the ice content decreases, the creep velocity increases and the shear zone rises towards the surface, where seasonal temperature changes and the presence of liquid water might also influence deformation. Copyright © 2002 John Wiley & Sons, Ltd. [source] |