Home About us Contact | |||
Mechanical Modeling (mechanical + modeling)
Selected AbstractsStatistical Mechanical Modeling of Protein AdsorptionMATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 12 2003P. R. Van TasselArticle first published online: 5 JAN 200 Abstract We present rationale for and a derivation of a statistical mechanical model of protein adsorption. Proteins are modeled as rigid geometric objects adsorbing initially in a reversible manner and subsequently undergoing an irreversible change in shape to a permanently adsorbed state. Both adsorption and shape change occur subject to energetic interactions with previously adsorbed proteins. We evaluate the model quantitatively for proteins with disk-shaped projections within the scaled particle theory and compare the predictions to experimental measurements taken via optical waveguide lightmode spectroscopy. [source] Strain field measurements of rubber by image analysis and design criteria for laminated rubber bearings (LRB)EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2004Chamindalal Sujeewa Lewangamage Abstract Although seismic isolation rubber bearings in bridges and buildings have proven to be a very effective passive method for reducing earthquake-induced forces, a detailed mechanical modeling of the rubber that is used in bearings under large strains has not been established. Therefore, a 3D model of failure behavior and the design criteria for the safety evaluation of seismic isolation bearings have not yet been developed. This paper presents: (1) correlation-based template-matching algorithms to measure large strain fields of continua; (2) a failure criterion for rubber; and (3) the design criteria for the safety evaluation of laminated algorithms, data-validation algorithms were developed and implemented to eliminate possible unrealistic displacement vectors present in the measured displacement field. The algorithms were successfully employed in the strain field measurement of LRB and rubber materials that are subjected to failure. The measured local strains for rubber material at failure were used to develop a failure criterion for rubber. The validity of the proposed criterion was evaluated by applying it to the LRB; the criterion was introduced into a 3D finite element model of LRB, compared with the experimental results of bearings failure, and verified. Finally, design criteria are proposed for LRB for the safety evaluation. Copyright © 2003 John Wiley & Sons, Ltd. [source] Advanced Experimental and Simulation Approaches to Meet Reliability Challenges of New Electronics SystemsADVANCED ENGINEERING MATERIALS, Issue 4 2009Dietmar Vogel Abstract This paper focuses on some advanced aspects of physics of failure approaches. Tracing of failure modes under realistic loading is a key issue to separate relevant failure sites to be studied in more detail. In the past design of experiment (DoE) tools have been developed to handle this problem. They allow to optimize design and/or material selection with respect to different failure mechanisms and sites. The application of these methods is demonstrated by optimizations performed for fracture problems. Interface fracture has been chosen as one of the most important failure mechanisms. Finally, local stress and strain measurement tools developed over the past years are presented at the end of the paper. They are tools to validate simulation results and therefore the underlying mechanical modeling. Namely, local stress measurement tools under development are needed to make realistic assumptions of loading conditions and to provide residual stress data for FEA. [source] On the Relation Between Steep Monoclinal Flexure Zones and Steep Hydraulic GradientsGROUND WATER, Issue 5 2007Y. Yechieli Steep hydraulic gradients are found in association with steep monoclinal flexures. However, the physics of the reduction of the hydraulic conductivity, which is responsible for the steep gradients, has seldom been studied. We present results of hydrological and mechanical modeling aiming to study the effect of such steep hydraulic gradients demonstrated in the Judea Group Aquifer system, Israel. The hydrological configuration of steep dips and anisotropy between flows parallel and perpendicular to the bedding planes was simulated using the FEFLOW code. It exhibited a situation whereby part of the flow is oblique to the bedding planes and therefore some steepening of the hydraulic gradients occurred due to actual conductivity reduction. However, this reduction is not enough to account for the steeper gradients observed. The effect of a deep-seated reverse fault under the monocline on the permeability distribution within the structure was examined by numerical mechanical simulations. It exhibited a compressional stress distribution in the steep part of the monocline, which, due to shortening and closure of joints and voids, is presumably responsible for a significant pressure-induced permeability reduction. This process by itself in a layered structure, including interlayering of thin marl layers, could be responsible for the steep hydraulic gradients in the steep part of the monocline. [source] Development and Maturation of the Pediatric Human Vocal Fold Lamina Propria,THE LARYNGOSCOPE, Issue 1 2005Christopher J. Hartnick MD Abstract Objective: To identify characteristic patterns of maturation of the human vocal fold lamina propria as it develops into a mature structure. Methods: Histologic evaluation of sectioned true vocal folds from 34 archived larynges ages 0 to 18 years using hematoxylin-eosin, trichrome, Alcian blue pH 2.5, Weigert reticular, and Miller's elastin stain. Location: Pathology department at a tertiary care children's hospital. Results: At birth and shortly thereafter, there exists a relative hypercellular monolayer of cells throughout the lamina propria. By 2 months of age, there are the first signs of differentiation into a bilaminar structure of distinct cellular population densities. Between 11 months and 5 years, two distinct patterns are seen: 1) this bilaminar structure and 2) a lamina propria where there exists a third more hypocellular region immediately adjacent to the vocalis muscle (this region is similar to the superficial hypocellular region found just deep to the surface epithelium). By 7 years of age, all of the specimens exhibit this transition between the middle and the deeper layers according to differential density of cell populations. A lamina propria structure defined by differential fiber composition (elastin and collagen fibers) is not present until 13 years of age and then is present throughout adolescence. Conclusions: Using the classic adult model of fiber composition and density to differentiate the layered structure of the lamina propria of the human vocal fold may not adequately allow for a thorough description of the process of maturation and development. Rather, distinct regions of cell density are seen as early as 2 months postpartum, and the model of cellular distribution may serve better to describe the lamina propria as it develops. Cell-signaling processes that shape the formation of the lamina propria appear to produce layered populations of differential cell density that in turn will later produce differential fiber compositions. Early development therefore can be followed by evaluating the maturation of these differing cell populations. Future studies are needed to quantify these cell distribution patterns, to study the cell signaling processes that trigger this maturation, and to correlate these findings with mechanical modeling. [source] |