Mechanical Integrity (mechanical + integrity)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science


Selected Abstracts


Redox Cycling of Ni-Based Solid Oxide Fuel Cell Anodes: A Review

FUEL CELLS, Issue 3 2007
D. Sarantaridis
Abstract The published literature relating to damage to SOFCs caused by redox cycling of Ni-based anodes is reviewed. The review covers the kinetics of Ni oxidation and NiO reduction (as single phases and as constituents of composites with yttria-stabilised zirconia, YSZ), the dimensional changes associated with redox cycling and the effect of this on the mechanical integrity and electrical performance of cells and stacks. A critical parameter is the expansion strain that is caused by oxidation. Several studies report that the first complete oxidation of a Ni/YSZ composite causes a linear expansion of the order of 1%, but the actual values vary substantially between different investigations. The oxidation strain is the result of microstructural irreversibility during the redox process and leads to strain accumulation over several redox cycles. This can cause mechanical disruption to an anode, anode support or other cell components attached to the anode. A simplified mechanical model of the stress and damage that are likely to be caused by anode expansion is proposed and applied to anode-supported, electrolyte-supported and inert substrate-supported cell configurations. This allows the maximum oxidation strain to avoid damage in each configuration to be estimated. [source]


Assembly of Multi-Stranded Nanofiber Threads through AC Electrospinning,

ADVANCED MATERIALS, Issue 3 2009
Siddharth Maheshwari
Multi-stranded threads are fabricated using AC electrospinning. The threads are 1,100,µm thick and are composed of interconnected ,100,nm thick nanofiber strands. The ease of collection due to localization of the whipping instability leads to uncomplicated control and placement of the threads. The network structure has high mechanical integrity and allows for use in fabric weaving, filtration, and biomedical applications. [source]


New Design of a Ceramic Filter for Diesel Emission Control Applications

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 6 2005
Aleksander J. Pyzik
Diesel particulate filters (DPF) made from an advanced ceramic material (ACM) based on mullite have demonstrated high filtration efficiency, low-pressure drop, high-temperature handling capability, and excellent mechanical integrity at a porosity of 60% or higher. Due to the ability to control microstructure, total porosity, and particle size distribution, Dow's acicular mullite can be tailored to meet requirements for deep bed filtration and fine particles emission control. In addition, the ACM DPF is suitable for catalyzed applications and it can retain its performance with a broad range of catalysts and over a wide range of catalyst loadings. This study describes a material selected for a DPF design that meets current diesel particulate emission control requirements as well as a four-way NOx control system. [source]


Enhancing the mechanical integrity of the implant,bone interface with BoneWelding® technology: Determination of quasi-static interfacial strength and fatigue resistance

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2006
Stephen J. Ferguson
Abstract The BoneWelding® technology is an innovative bonding method, which offers new alternatives in the treatment of fractures and other degenerative disorders of the musculoskeletal system. The BoneWelding process employs ultrasonic energy to liquefy a polymeric interface between orthopaedic implants and the host bone. Polymer penetrates the pores of the surrounding bone and, following a rapid solidification, forms a strong and uniform bond between implant and bone. Biomechanical testing was performed to determine the quasi-static push-out strength and fatigue performance of 3.5-mm-diameter polymeric dowels bonded to a bone surrogate material (Sawbones solid and cellular polyurethane foam) using the BoneWelding process. Fatigue tests were conducted over 100,000 cycles of 20,100 N loading. Mechanical test results were compared with those obtained with a comparably-sized, commercial metallic fracture fixation screw. Tests in surrogate bone material of varying density demonstrated significantly superior mechanical performance of the bonded dowels in comparison to conventional bone screws (p < 0.01), with holding strengths approaching 700 N. Even in extremely porous host material, the performance of the bonded dowels was equivalent to that of the bone screws. For both cellular and solid bone analog materials, failure always occurred within the bone analog material surrounding and distant to the implant; the infiltrated interface was stronger than the surrounding bone analog material. No significant decrease in interfacial strength was observed following conditioning in a physiological saline solution for a period of 1 month prior to testing. Ultrasonically inserted implants migrated, on average, less than 20 ,m over, and interfacial stiffness remained constant the full duration of fatigue testing. With further refinement, the BoneWelding technology may offer a quicker, simpler, and more effective method for achieving strong fixation and primary stability for fracture fixation or other orthopaedic and dental implant applications. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


Bioactive and mechanically strong Bioglass®-poly(D,L -lactic acid) composite coatings on surgical sutures

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2006
Q. Z. Chen
Abstract New coating processes have been investigated for degradable (Vicryl®) and nondegradable (Mersilk®) sutures with the aim to develop Bioglass® coated polymer fibers for wound healing and tissue engineering scaffold applications. First, the aqueous phase of a Bioglass® particle slurry was replaced with a poly(D,L -lactic acid) (PDLLA) polymer dissolved in solvent dimethyle carbonate (DMC) to act as third phase. SEM observations indicated that this alteration significantly improved the homogeneity of the coatings. Second, a new coating strategy involving two steps was developed: the sutures were first coated with a Bioglass®,PDLLA composite film followed by a second PDLLA coating. This two-step process of coating has addressed the problem of poor adherence of Bioglass® particles on suture surfaces. The coated sutures were knotted to determine qualitatively the mechanical integrity of the coatings. The results indicated that adhesion strength of coatings obtained by the two-step method was remarkably enhanced. A comparative assessment of the bioactivity of one-step and two-step produced coatings was carried out in vitro using acellular simulated body fluid (SBF) for up to 28 days. Coatings produced by the two-step process were found to have similar bioactivity as the one-step produced coatings. The novel Bioglass®/PDLLA/Vicryl® and Bioglass®/PDLLA/Mersilk® composite sutures are promising bioactive materials for wound healing and tissue engineering applications. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


Influence of Orthogonal Overload on Human Vertebral Trabecular Bone Mechanical Properties,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2007
Arash Badiei
Abstract The aim of this study was to investigate the effects of overload in orthogonal directions on longitudinal and transverse mechanical integrity in human vertebral trabecular bone. Results suggest that the trabecular structure has properties that act to minimize the decrease of apparent toughness transverse to the primary loading direction. Introduction: The maintenance of mechanical integrity and function of trabecular structure after overload remains largely unexplored. Whereas a number of studies have focused on addressing the question by testing the principal anatomical loading direction, the mechanical anisotropy has been overlooked. The aim of this study was to investigate the effects of overload in orthogonal directions on longitudinal and transverse mechanical integrity in human vertebral trabecular bone. Materials and Methods: T12/L1 vertebral bodies from five cases and L4/L5 vertebral bodies from seven cases were retrieved at autopsy. A cube of trabecular bone was cut from the centrum of each vertebral body and imaged by ,CT. Cubes from each T12/L1 and L4/L5 pairs were assigned to either superoinferior (SI) or anteroposterior (AP) mechanical testing groups. All samples were mechanically tested to 10% apparent strain by uniaxial compression according to their SI or AP allocation. To elucidate the extent to which overload in orthogonal directions affects the mechanical integrity of the trabecular structure, samples were retested (after initial uniaxial compression) in their orthogonal direction. After mechanical testing in each direction, apparent ultimate failure stresses (UFS), apparent elastic moduli (E), and apparent toughness moduli (u) were computed. Results: Significant differences in mechanical properties were found between SI and AP directions in both first and second overload tests. Mechanical anisotropy far exceeded differences resulting from overloading the structure in the orthogonal direction. No significant differences were found in mean UFS and mean u for the first or second overload tests. A significant decrease of 35% was identified in mean E for cubes overloaded in the SI direction and then overloaded in the AP direction. Conclusions: Observed differences in the mechanics of trabecular structure after overload suggests that the trabecular structure has properties that act to minimize loss of apparent toughness, perhaps through energy dissipating sacrificial structures transverse to the primary loading direction. [source]


Mapping Quantitative Trait Loci for Vertebral Trabecular Bone Volume Fraction and Microarchitecture in Mice,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2004
Mary L Bouxsein
Abstract BMD, which reflects both cortical and cancellous bone, has been shown to be highly heritable; however, little is known about the specific genetic factors regulating trabecular bone. Genome-wide linkage analysis of vertebral trabecular bone traits in 914 adult female mice from the F2 intercross of C57BL/6J and C3H/HeJ inbred strains revealed a pattern of genetic regulation derived from 13 autosomes, with 5,13 QTLs associated with each of the traits. Ultimately, identification of genes that regulate trabecular bone traits may yield important information regarding mechanisms that regulate mechanical integrity of the skeleton. Introduction: Both cortical and cancellous bone influence the mechanical integrity of the skeleton, with the relative contribution of each varying with skeletal site. Whereas areal BMD, which reflects both cortical and cancellous bone, has been shown to be highly heritable, little is known about the genetic determinants of trabecular bone density and architecture. Materials and Methods: To identify heritable determinants of vertebral trabecular bone traits, we evaluated the fifth lumbar vertebra from 914 adult female mice from the F2 intercross of C57BL/6J (B6) and C3H/HeJ (C3H) progenitor strains. High-resolution ,CT was used to assess total volume (TV), bone volume (BV), bone volume fraction (BV/TV), trabecular thickness (Tb.Th), separation (Tb.Sp), and number (Tb.N) of the trabecular bone in the vertebral body in the progenitors (n = 8/strain) and female B6C3H-F2 progeny (n = 914). Genomic DNA from F2 progeny was screened for 118 PCR-based markers discriminating B6 and C3H alleles on all 19 autosomes. Results and Conclusions: Despite having a slightly larger trabecular bone compartment, C3H progenitors had dramatically lower vertebral trabecular BV/TV (,53%) and Tb.N (,40%) and higher Tb.Sp (71%) compared with B6 progenitors (p < 0.001 for all). Genome-wide quantitative trait analysis revealed a pattern of genetic regulation derived from 13 autosomes, with 5,13 quantitative trait loci (QTLs) associated with each of the vertebral trabecular bone traits, exhibiting adjusted LOD scores ranging from 3.1 to 14.4. The variance explained in the F2 population by each of the individual QTL after adjusting for contributions from other QTLs ranged from 0.8% to 5.9%. Taken together, the QTLs explained 22,33% of the variance of the vertebral traits in the F2 population. In conclusion, we observed a complex pattern of genetic regulation for vertebral trabecular bone volume fraction and microarchitecture using the F2 intercross of the C57BL/6J and C3H/HeJ inbred mouse strains and identified a number of QTLs, some of which are distinct from those that were previously identified for total femoral and vertebral BMD. Identification of genes that regulate trabecular bone traits may ultimately yield important information regarding the mechanisms that regulate the acquisition and maintenance of mechanical integrity of the skeleton. [source]


Long-Term Effect of Incadronate Disodium (YM-175) on Fracture Healing of Femoral Shaft in Growing Rats

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2001
Chaoyang Li
Abstract The aim of this study was to investigate the long-term effect of incadronate on fracture healing of the femoral shaft in rats. Female Sprague-Dawley 8-week-old rats were injected subcutaneously (sc) with either vehicle (V group) or two doses of incadronate (10 ,g/kg and 100 ,g/kg) three times a week for 2 weeks. Right femoral diaphysis was then fractured and fixed with intramedullary stainless wire. Just after fracture, incadronate treatment was stopped in pretreatment groups (P groups: P-10 and P-100) or continued in continuous treatment groups (C groups: C-10 and C-100). All rats were killed at 25 weeks or 49 weeks after surgery. Fractured femur was evaluated radiologically and mechanically and then stained in Villanueva bone stain and embedded in methyl methacrylate. Undecalcified cross-sections from the fracture area were evaluated microradiologically and histomorphometrically. Radiographic observation showed that the fracture line disappeared in all groups. Cross-sectional area in the C-100 group was the biggest among all groups and in the C-10 group was larger than that in the V group at 25 weeks. Histological and histomorphometric observations showed that the process of fracture healing was delayed under continuous treatment with incadronate as evidenced by the delay of both lamellar cortical shell formation and resolution of original cortex in C groups. Percent linear labeling perimeter, mineral apposition rate (MAR), and bone formation rate (BFR) in C groups significantly decreased compared with the other groups, indicating that the callus remodeling was suppressed under continuous treatment, especially with a high dose. Mechanical study showed that the stiffness and ultimate load of the fractured femur in the C 100 group were the highest among all groups at both 25 weeks and 49 weeks. In conclusion, this study showed that long-term continuous treatment with incadronate delayed the process of fracture healing of femur in rats, especially under high dose but it did not impair the recovery of mechanical integrity of the fracture. [source]


The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2006
Ronald W. Lindsey
Abstract The authors developed a novel technique for the reconstruction of large segmental long bone defects using a cylindrical titanium mesh cage (CTMC). Although the initial clinical reports have been favorable, the CTMC technique has yet to be validated in a clinically relevant large animal model, which is the purpose of this study. Under general anesthesia, a unilateral, 3-cm mid-diaphyseal segmental defect was created in the femur of an adult canine. The defect reconstruction technique consisted of a CTMC that was packed and surrounded with a standard volume of morselized canine cancellous allograft and canine demineralized bone matrix. The limb was stabilized with a reamed titanium intramedullary nail. Animals were distributed into four experimental groups: in Groups A, B, and C (six dogs each), defects were CTMC reconstructed, and the animals euthanized at 6, 12, and 18 weeks, respectively; in Group D (three dogs), the same defect reconstruction was performed but without a CTMC, and the animals were euthanized at 18 weeks. The femurs were harvested and analyzed by gross inspection, plain radiography, computed tomography (CT), and single photon emission computed tomography (SPECT). The femurs were mechanically tested in axial torsion to failure; two randomly selected defect femurs from each group were analyzed histologically. Groups A, B, and C specimens gross inspection, plain radiography, and CT, demonstrated bony restoration of the defect, and SPECT confirmed sustained biological activity throughout the CTMC. Compared to the contralateral femur, the 6-, 12-, and 18-week mean defect torsional stiffness was 44.4, 45.7, and 72.5%, respectively; the mean torsional strength was 51.0, 73.6, and 83.4%, respectively. Histology documented new bone formation spanning the defect. Conversely, Group D specimens (without CTMC) demonstrated no meaningful bone formation, biologic activity, or mechanical integrity at 18 weeks. The CTMC technique facilitated healing of a canine femur segmental defect model, while the same technique without a cage did not. The CTMC technique may be a viable alternative for the treatment of segmental long bone defects. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1438,1453, 2006 [source]


Age, gender, and bone lamellae elastic moduli

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2000
C. E. Hoffler
To enhance preventative and therapeutic strategies for metabolic bone diseases and bone fragility disorders, we began to explore the physical properties of bone tissue at the cellular level. Proximal femurs were harvested from 27 cadavera (16 male and 11 female) for in vitro measurement of the mechanical properties. We measured the variations in lamellar-level elastic modulus and hardness in human bone as a function of age and gender to identify microstructural properties responsible for age and gender-related reductions in the mechanical integrity. The lateral femoral necks were examined, and age, gender, height, body mass, and body mass index were not found to correlate with lamellar-level elastic modulus or hardness. This result was consistent for osteonal, interstitial, and trabecular tissue. These data suggest that increased bone mass maintenance, known to occur in heavier individuals, is not accompanied by increases in the lamellar-level elastic modulus or hardness. The independence of elastic modulus and hardness from age and gender suggests that age and gender-related decreases in mechanical integrity do not involve alterations in elastic modulus or hard ness of the extracellular matrix. Lamellar-level ultimate, fatigue, and fracture toughness properties should also be investigated. Other factors, such as tissue mass and organization, may also contribute to age and gender-related decreases in the mechanical integrity. [source]


Sulfonated polybenzimidazoles: Proton conduction and acid,base crosslinking

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 16 2010
Owen D. Thomas
Abstract A series of soluble, benzimidazole-based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm,1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK-only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm,1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640,3650, 2010 [source]


Mechanism for Salt Scaling

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2006
John J. Valenza II
Over the past 60 years, concrete infrastructure in cold climates has deteriorated by "salt scaling," which is superficial damage that occurs during freezing in the presence of saline water. It reduces mechanical integrity and necessitates expensive repair or replacement. The phenomenon can be demonstrated by pooling a solution on a block of concrete and subjecting it to freeze/thaw cycles. The most remarkable feature of salt scaling is that the damage is absent if the pool contains pure water, it becomes serious at concentrations of a few weight percent, and then stops at concentrations above about 6 wt%. In spite of a wealth of research, the mechanism responsible for this damage has only recently been identified. In this article, we show that salt scaling is a consequence of the fracture behavior of ice. The stress arises from thermal expansion mismatch between ice and concrete, which puts the ice in tension as the temperature drops. Considering the mechanical and viscoelastic properties of ice, it is shown that this mismatch will not cause pure ice to crack, but moderately concentrated solutions are expected to crack. Cracks in the brine ice penetrate into the substrate, resulting in superficial damage. At high concentrations, the ice does not form a rigid enough structure to result in significant stress, so no damage occurs. The morphology of cracking is predicted by fracture mechanics. [source]


Novel Polymer Electrolyte Membrane, Based on Pyridine Containing Poly(ether sulfone), for Application in High-Temperature Fuel Cells

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 21 2005
Elefterios K. Pefkianakis
Abstract Summary: Novel poly(aryl ether sulfone) copolymers containing 2,5-biphenylpyridine and tetramethyl biphenyl moieties were synthesized by polycondensation of 4-fluorophenyl sulfone with 2,5-(4,,4, dihydroxy biphenyl)pyridine and tetramethyl biphenyl diol. Copolymers with different molecular weights and different monomer compositions were obtained. These copolymers exhibit excellent film-forming properties, mechanical integrity, and high modulus up to 250,°C, high glass transition temperatures (above 280,°C) as well as high thermal stability up to 400,°C. In addition to the above properties required for PEMFC application, this novel material shows high oxidative stability and acid doping ability, enabling proton conductivity in the range of 10,2 S,·,cm,1 above 130,°C. Synthesis of copolymers with high acid uptake and ionic conductivity. [source]


The application of 23Na double-quantum-filter (DQF) NMR spectroscopy for the study of spinal disc degeneration

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2008
Kristopher J. Ooms
Abstract Degenerative disc disease is an irreversible process that leads to a loss of mechanical integrity and back pain in millions of people. In this report, 23Na double-quantum-filtered (DQF) NMR spectroscopy is used to study disc tissues in two stages of degeneration. Initial results indicate that the 23Na DQF signal may be useful for determining the degree of degeneration. The spectral analysis reveals the presence of sodium environments with different residual quadrupolar couplings and T2 relaxation times that we attribute to different regions, or compartments, corresponding to different biochemical regions in the tissue. In general it is found that there are compartments with no residual quadrupolar couplings, compartments with moderate couplings (200 to 1000 Hz), and compartments with couplings ranging from 1500 to 3000 Hz. The results indicate that 23Na DQF NMR spectroscopy provides a probe of the degenerative state of the intervertebral disc tissues, and might hold potential as a novel diagnostic method for detection of disc degeneration. Magn Reson Med 60:246,252, 2008. © 2008 Wiley-Liss, Inc. [source]


Effect of UV irradiation on type I collagen fibril formation in neutral collagen solutions

PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 3 2001
Julian M. Menter
Background: Collagens have the well-known ability to spontaneously self-associate to form fibrils at physiological temperature and neutral pH in vitro and in vivo. Because solar UV may photochemically alter collagen, the kinetics of fibril formation may be modified. Thus, we have begun a systematic study of the effect of various UV wavebands on fibril formation. Methods: Citrate-soluble calf skin collagen (Elastin Products) was dissolved at 0.05% in 0.5 M HOAc, dialyzed over 2 days into two changes of 0.0327 M phosphate buffer, pH 7.0 at 4 °C, and centrifuged at 48 000×g. Photolysis was carried out at 4 °C with either (a) UVC (UVG,11 lamp), (b) filtered solar-simulating radiation (SSR) or UVA (SSR or UVL,21 lamp filtered with a 2.0 mm Schott WG 345 filter). Gelation was commenced by rapidly raising the temperature from 8 °C to 33 °C. Nucleation and growth were followed by turbidimetric measurements at 400 nm. Results: UVC radiation (0,17.3 J/cm2) resulted in a dose-dependent decrease in the rate of fibril growth. Under these conditions, concomitant collagen cross-linking and degradation occurred. Fibril nucleation, a prerequisite for growth, was rapid (threshold , 2 min) and was not affected by UVC, UVA or SSR. SSR (0,1320 J/cm2) caused a small decrease in growth rate and in the degree of fibril formation. UVA radiation (0,1080 J/cm2) had a similar effect. "Direct" photochemical damage thus paralleled absorption via various collagen chromophores, with UVC>SSR,UVA. The presence of riboflavin (RF) resulted in ground-state interactions that markedly altered both nucleation and growth kinetics. Irradiation with 29.6 J/cm2 UVA in the presence of RF photosensitizer caused relatively minor additional changes in fibrillation kinetics. Conclusions: These results collectively indicate that fibril formation is markedly dependent on specific ground state interactions and relatively insensitive to nonspecific UV damage. On the other hand, fibrils thus formed from photochemically altered collagen may have altered structural properties that could have subtle but unfavorable effects on the local dermal milieu in vivo. Notwithstanding, the relative insensitivity of fibrillogenesis to non-specific photochemical damage probably represents a favorable adaptation, overall, which tends to conserve the mechanical integrity of the skin. [source]


Polymers as functional components in batteries and fuel cells,

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 9-10 2006
Gerhard Wegner
Abstract The recent 10 years have seen an unprecedented development in the area of portable electronic devices: mobile phones, laptops, PDAS, and digital cameras have all become commodities on a large scale. All of these devices need a power supply in terms of a battery acceptable capacity, possibly rechargeable. This demand has triggered research and development in polymer materials science for lithium ion conducting polymers that could replace or avoid organic liquids as a supporting electrolyte. Moreover, polymers need to be optimized that act in the form of "gels" as framework and/or membrane materials to achieve mechanical integrity of the electrode compartments. Ionic conductivity for protons in polymeric systems is also the key issue in the development of so-called polyelectrolyte-membrane fuel cells (PEMFCs) that are supposed to work as power sources for mobile applications, e.g. in hybrid cars. A liquid fuel such as methanol would be converted to CO2 and H2O with concomitant production of electricity. Novel proton conducting polymer systems are required that work at temperatures between 150,200°C, that is under more or less water-free conditions. These requirements find an echo in the academic world in terms of renewed interest in the mechanisms of ionic transport phenomena in polymeric systems and in studies that aim for optimization of materials. In this article there will be a report on both lithium-ion and proton conducting polymers that have been recently developed in the authors' laboratory. The results will be discussed in the context of the demands that need to be met for advanced technologies. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis

ARTHRITIS & RHEUMATISM, Issue 7 2009
Shi-Lu Chia
Objective We have previously identified in articular cartilage an abundant pool of the heparin-binding growth factor, fibroblast growth factor 2 (FGF-2), which is bound to the pericellular matrix heparan sulfate proteoglycan, perlecan. This pool of FGF-2 activates chondrocytes upon tissue loading and is released following mechanical injury. In vitro, FGF-2 suppresses interleukin-1,driven aggrecanase activity in human cartilage explants, suggesting a chondroprotective role in vivo. We undertook this study to investigate the in vivo role of FGF-2 in murine cartilage. Methods Basal characteristics of the articular cartilage of Fgf2,/, and Fgf2+/+ mice were determined by histomorphometry, nanoindentation, and quantitative reverse transcriptase,polymerase chain reaction. The articular cartilage was graded histologically in aged mice as well as in mice in which osteoarthritis (OA) had been induced by surgical destabilization of the medial meniscus. RNA was extracted from the joints of Fgf2,/, and Fgf2+/+ mice following surgery and quantitatively assessed for key regulatory molecules. The effect of subcutaneous administration of recombinant FGF-2 on OA progression was assessed in Fgf2,/, mice. Results Fgf2,/, mice were morphologically indistinguishable from wild-type (WT) animals up to age 12 weeks; the cartilage thickness and proteoglycan staining were equivalent, as was the mechanical integrity of the matrix. However, Fgf2,/, mice exhibited accelerated spontaneous and surgically induced OA. Surgically induced OA in Fgf2,/, mice was suppressed to levels in WT mice by subcutaneous administration of recombinant FGF-2. Increased disease in Fgf2,/, mice was associated with increased expression of messenger RNA of Adamts5, the key murine aggrecanase. Conclusion These data identify FGF-2 as a novel endogenous chondroprotective agent in articular cartilage. [source]


Polymerization and matrix physical properties as important design considerations for soluble collagen formulations

BIOPOLYMERS, Issue 8 2010
S. T. Kreger
Abstract Despite extensive use of type I collagen for research and medical applications, its fibril-forming or polymerization potential has yet to be fully defined and exploited. Here, we describe a type I collagen formulation that is acid solubilized from porcine skin collagen (PSC), quality controlled based upon polymerization potential, and well suited as a platform polymer for preparing three-dimensional (3D) culture systems and injectable/implantable in vivo cellular microenvironments in which both relevant biochemical and biophysical parameters can be precision-controlled. PSC is compared with three commercial collagens in terms of composition and purity as well as polymerization potential, which is described by kinetic parameters and fibril microstructure and mechanical properties of formed matrices. When subjected to identical polymerization conditions, PSC showed significantly decreased polymerization times compared to the other collagens and yielded matrices with the greatest mechanical integrity and broadest range of mechanical properties as characterized in oscillatory shear, uniaxial extension, and unconfined compression. Compositional and intrinsic viscosity analyses suggest that the enhanced polymerization potential of PSC may be attributed to its unique oligomer composition. Collectively, this work demonstrates the importance of standardizing next generation collagen formulations based upon polymerization potential and provides preliminary insight into the contribution of oligomers to collagen polymerization properties. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 690,707, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]