Home About us Contact | |||
Mechanical Flexibility (mechanical + flexibility)
Selected AbstractsInterface Engineering for Organic ElectronicsADVANCED FUNCTIONAL MATERIALS, Issue 9 2010Hong Ma Abstract The field of organic electronics has been developed vastly in the past two decades due to its promise for low cost, lightweight, mechanical flexibility, versatility of chemical design and synthesis, and ease of processing. The performance and lifetime of these devices, such as organic light-emitting diodes (OLEDs), photovoltaics (OPVs), and field-effect transistors (OFETs), are critically dependent on the properties of both active materials and their interfaces. Interfacial properties can be controlled ranging from simple wettability or adhesion between different materials to direct modifications of the electronic structure of the materials. In this Feature Article, the strategies of utilizing surfactant-modified cathodes, hole-transporting buffer layers, and self-assembled monolayer (SAM)-modified anodes are highlighted. In addition to enabling the production of high-efficiency OLEDs, control of interfaces in both conventional and inverted polymer solar cells is shown to enhance their efficiency and stability; and the tailoring of source,drain electrode,semiconductor interfaces, dielectric,semiconductor interfaces, and ultrathin dielectrics is shown to allow for high-performance OFETs. [source] Battery Drivable Organic Single-Crystalline Transistors Based on Surface Grafting Ultrathin Polymer DielectricADVANCED FUNCTIONAL MATERIALS, Issue 18 2009Liqiang Li Abstract High-performance and battery drivable organic single-crystalline transistors with operational voltages,,,2.0,V are demonstrated using high-quality copper phthalocyanine (CuPc) single-crystalline nanoribbons and ultrathin polymer nanodielectrics. The ultrathin polymer nanodielectric is synthesized by grafting a ca. 10,nm poly(methyl methacrylate) (PMMA) brush on a silicon surface via surface-initiated atom-transfer radical polymerization (SI-ATRP). This surface-grafted nanodielectric exhibits a large capacitance, excellent insulating property, and good compatibility with organic semiconductors. The realization of a low operational voltage for battery driving at high performance, together with the merits of surface grafting of a nanodielectric, as well as the mechanical flexibility of the organic nanoribbon, suggests a bright future for use of these transistors in low-cost and flexible circuits. [source] High-Performance Flexible Transparent Thin-Film Transistors Using a Hybrid Gate Dielectric and an Amorphous Zinc Indium Tin Oxide ChannelADVANCED MATERIALS, Issue 21 2010Jun Liu High-performance flexible transparent thin-film transistors (TFTs) are demonstrated using amorphous zink indium tin oxide (ZITO) transparent oxide conductor electrodes, an amorphous ZITO transparent oxide semiconductor channel, and a vapor-deposited self-assembled nanodielectric (v-SAND) gate insulator. These TFTs exhibit a large field-effect mobility of 110 cm2V,1s,1, a current on/off ratio of 104, and a low operating voltage of 1.0,V, along with very good optical transparency and mechanical flexibility. [source] Multiscale modeling of nucleic acids: Insights into DNA flexibilityBIOPOLYMERS, Issue 9 2008Yannick J. Bomble Abstract The elastic rod theory is used together with all-atom normal mode analysis in implicit solvent to characterize the mechanical flexibility of duplex DNA. The bending, twisting, stretching rigidities extracted from all-atom simulations (on linear duplexes from 60 to 150 base pairs in length and from 94-bp minicircles) are in reasonable agreement with experimental results. We focus on salt concentration and sequence effects on the overall flexibility. Bending persistence lengths are about 20% higher than most experimental estimates, but the transition from low-salt to high-salt behavior is reproduced well, as is the dependence of the stretching modulus on salt (which is opposite to that of bending). CTG and CGG trinucleotide repeats, responsible for several degenerative disorders, are found to be more flexible than random DNA, in agreement with several recent studies, whereas poly(dA).poly(dT) is the stiffest sequence we have encountered. The results suggest that current all-atom potentials, which were parameterized on small molecules and short oligonucleotides, also provide a useful description of duplex DNA at much longer length scales. © 2008 Wiley Periodicals, Inc. Biopolymers 89: 722,731, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |