Home About us Contact | |||
Mechanical Damage (mechanical + damage)
Selected AbstractsGlucose Depletion Enhances Sensitivity to Shear Stress-induced Mechanical Damage in Red Blood Cells by Rotary Blood PumpsARTIFICIAL ORGANS, Issue 9 2009Daisuke Sakota Abstract The metabolic process in red blood cells (RBCs) is anaerobic. The life-dependent adenosine triphosphate (ATP) for survival of cells is produced through glycolytic process. The aim of the study was to evaluate the effects of the glucose level on the mean corpuscular volume, mean corpuscular hemoglobin concentration, and hemolysis rate during hemolysis study by rotary blood pumps. The shear stress generated by rotary blood pumps may enhance glucose utilization by RBCs with depletion of glucose affecting ATP production and, consequently, cell size, shape, and morphology. The shear stress increases metabolism of RBCs consuming more energy ATP which is produced anaerobically from glycolytic process. Hence, in the closed circuit testing of rotary blood pumps, depletion of glucose might occur after prolonged pumping, which in turn affects metabolic process of RBCs by changing their size, shape, and morphology. It is thus suggested to monitor and control the glucose level of the fluid that suspends RBCs depending on the study duration. [source] Load-bearing capacity of all-ceramic posterior four-unit fixed partial dentures with different zirconia frameworksEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2 2007Philipp Kohorst The aim of this in vitro study was to compare the load-bearing capacity of posterior four-unit fixed partial dentures (FPDs) produced with two different yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP) ceramics, one being a presintered material, the other a fully sintered, hot isostatically pressed material. Additionally, as a novel approach, the influence of preliminary mechanical damage upon the fracture force of an FPD has been investigated. A total of 20 frameworks each were milled from presintered zirconia and from fully sintered zirconia. Prior to veneering, 10 frameworks of each material were ,damaged' by a defined saw cut similar to an accidental flaw generated during shape cutting. Before fracture testing, all FPDs were subjected to thermal and mechanical cycling. Additionally, scanning electron microscopy was used to investigate fracture surfaces. Statistical analysis showed that FPDs milled from fully sintered zirconia had a significantly higher fracture resistance compared with specimens made from presintered material, whereas preliminary damage did not have a significant effect. After aging, FPDs made from both materials were capable of withstanding occlusal forces reported in the literature. Therefore, both types of Y-TZP may be suitable for posterior four-unit all-ceramic FPDs, although further prolonged aging experiments and prospective clinical trials are required to prove their fitness for clinical use. [source] Evolution and development of gastropod larval shell morphology: experimental evidence for mechanical defense and repairEVOLUTION AND DEVELOPMENT, Issue 1 2001Carole S. Hickman SUMMARY The structural diversity of gastropod veliger larvae offers an instructive counterpoint to the view of larval forms as conservative archetypes. Larval structure, function, and development are fine-tuned for survival in the plankton. Accordingly, the study of larval adaptation provides an important perspective for evolutionary-developmental biology as an integrated science. Patterns of breakage and repair in the field, as well as patterns of breakage in arranged encounters with zooplankton under laboratory conditions, are two powerful sources of data on the adaptive significance of morphological and microsculptural features of the gastropod larval shell. Shells of the planktonic veliger larvae of the caenogastropod Nassarius paupertus[Gould] preserve multiple repaired breaks, attributed to unsuccessful zooplankton predators. In culture, larvae isolated from concentrated zooplankton samples rapidly repaired broken apertural margins and restored the "ideal" apertural form, in which an elaborate projection or "beak" covers the head of the swimming veliger. When individuals with repaired apertures were reintroduced to a concentrated mixture of potential zooplankton predators, the repaired margins were rapidly chipped and broken back. The projecting beak of the larval shell is the first line of mechanical defense, covering the larval head and mouth and potentially the most vulnerable part of the shell to breakage. Patterns of mechanical failure show that spiral ridges do reinforce the beak and retard breakage. The capacity for rapid shell repair and regeneration, and the evolution of features that resist or retard mechanical damage, may play a more prominent role than previously thought in enhancing the ability of larvae to survive in the plankton. [source] Identification of substrates for transglutaminase in Physarum polycephalum, an acellular slime mold, upon cellular mechanical damageFEBS JOURNAL, Issue 11 2007Fumitaka Wada Transglutaminases are Ca2+ -dependent enzymes that post-translationally modify proteins by crosslinking or polyamination at specific polypeptide-bound glutamine residues. Physarum polycephalum, an acellular slime mold, is the evolutionarily lowest organism expressing a transglutimase whose primary structure is similar to that of mammalian transglutimases. We observed transglutimase reaction products at injured sites in Physarum macroplasmodia upon mechanical damage. With use of a biotin-labeled primary amine, three major proteins constituting possible transglutimase substrates were affinity-purified from the damaged slime mold. The purified proteins were Physarum actin, a 40 kDa Ca2+ -binding protein with four EF-hand motifs (CBP40), and a novel 33 kDa protein highly homologous to the eukaryotic adenine nucleotide translocator, which is expressed in mitochondria. Immunochemical analysis of extracts from the damaged macroplasmodia indicated that CBP40 is partly dimerized, whereas the other proteins migrated as monomers on SDS/PAGE. Of the three proteins, CBP40 accumulated most significantly around injured areas, as observed by immunofluoresence. These results suggested that transglutimase reactions function in the response to mechanical injury. [source] Self-Healing Materials with Interpenetrating Microvascular NetworksADVANCED MATERIALS, Issue 41 2009Christopher J. Hansen Interpenetrating microvascular networks are embedded in an epoxy substrate via direct-write assembly. Each network is filled with one component of a two-part epoxy resin. This novel epoxy coating/substrate architecture enables repeated healing of at least 30 cycles of mechanical damage in the coating by independently supplying both healing agents to the damaged region(s). [source] Electron microscopy evaluation of block needle-related trauma to the tibial nerveACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2010K. S. MACDONALD Background: Direct puncture by a needle is a risk factor for nerve damage. This investigation used scanning electron microscopy (SEM) to attempt to visualize the damage caused by different needles. Method: A 15 cm section of the tibial nerve was removed from the ankle of a patient undergoing below-the-knee amputation. The nerve specimen was punctured perpendicular to the fibers once by each of four needles: an insulated 22 G short-beveled (30°), a 25 G long-beveled Quincke spinal needle, an 18 G Tuohy, and a 25 G Whitacre pencil point. The distal and proximal ends on either side of the needles were marked and the nerve was sectioned into 0.5 cm pieces. Each sample was preserved and then prepared for SEM. The needle tract was observed for evidence of mechanical damage at magnifications between × 47 and × 102 using SEM. Results: The epineurium, perineurium, fascicles, endoneurium, and vessels were identified in each sample. In both the short-beveled and the Whitacre samples, all fascicles along with the surrounding perineurium were intact. In both the Tuohy and the Quincke samples, obvious transection of fascicles and disruption of the perineurium were observed. Conclusions: This investigation suggests that both the Tuohy and the Quincke needles may be more likely to cause trauma to the tibial nerve than either the short-beveled or the Whitacre needles. [source] Quantitative Ultrasound Does Not Reflect Mechanically Induced Damage in Human Cancellous BoneJOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2000P. H. F. Nicholson Abstract This study investigated the ability of quantitative ultrasound (QUS) to detect reductions in the elastic modulus of cancellous bone caused by mechanical damage. Ultrasonic velocity and attenuation were measured using an in-house parametric imaging system in 46 cancellous bone cores from the human calcaneus. Each core was subjected to a mechanical testing regime to (a) determine the predamage elastic modulus, (b) induce damage by applying specified strains in excess of the yield strain, and (c) measure the postdamage elastic modulus. The specimens were divided into four groups: a control group subjected to a nominally nondestructive 0.7% maximum strain (,m) and three damage groups subjected to increasing strain levels (,m = 1.5, 3.0, and 4.5%). QUS measurements before and after the mechanical testing showed no significant differences between the control group and damage groups, despite highly significant (p < 0.001) reductions in the elastic modulus of up to 72%. These results indicate that current QUS techniques do not intrinsically reflect the elastic properties of cancellous bone. This is consistent with ultrasonic properties being determined by other factors (apparent density and/or architecture), which normally are associated strongly with elastic properties, but only when bone is mechanically intact. Clinically, this implies that ultrasound cannot be expected to detect bone fragility in the absence of major changes in bone density and/or trabecular architecture. [source] SCALE-UP and FIELD TEST of the VACUUM/STEAM/VACUUM SURFACE INTERVENTION PROCESS FOR POULTRY,JOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2003MICHAEL KOZEMPEL ABSTRACT The Vacuum/Steam/Vacuum surface intervention pilot plant processor was scaled up to a mobile unit that can be transported to close proximity of chicken processing plants. After several modifications to the mandrel that supports the broiler carcass in the treatment chamber to minimize mechanical damage, the unit was capable of 1.1 log cfu/mL kill of inoculated Listeria innocua and 1.4 log cfu/mL kill of inoculated E. coli K-12. Field tests achieved 1.4 log kill of E. coli and 1.2 log kill of Campylobacter on freshly processed chicken using 3 cycles and 138C saturated steam. But, there was extensive mechanical damage. the mandrel was modified in the Eastern Regional Research Center pilot plant to eliminate the mechanical damage. With mechanical damage eliminated, the bacteria kill was 1.1,1.5 log of inoculated E. coli K-12 with a total process time of 1.1 s. [source] Biomechanical consequences of an isolated overload on the human vertebral bodyJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2000David L. Kopperdahl The biomechanical consequences of an isolated overload to the vertebral body may play a role in the etiology of vertebral fracture. In this context, we quantified residual strains and reductions in stiffness and ultimate load when vertebral bodies were loaded to various levels beyond the elastic regimen and related these properties to the externally applied strain and bone density. Twenty-three vertebral bodies (T11-L4, from 23 cadavers aged 20,90 years) were loaded once in compression to a randomized nominal strain level between 0.37 and 4.5%, unloaded, and then reloaded to 10% strain. Residual strains of up to 1.36% developed on unloading and depended on the applied strain (r2 = 0.85) but not on density (p = 0.25). Percentage reductions in stiffness and ultimate load of up to 83.7 and 52.5%, respectively, depended on both applied strain (r2 = 0.90 and r2 = 0.32, respectively) and density (r2 = 0.23 and r2 = 0.22, respectively). Development of residual strains is indicative of permanent deformations, whereas percentage reductions in stiffness are direct measures of effective mechanical damage. These results therefore demonstrate that substantial mechanical damage,which is not visible from radiographs,can develop in the vertebral body after isolated overloads, as well as subtle but significant permanent deformations. This behavior is similar to that observed previously for cylindrical cores of trabecular bone. Taken together, these findings indicate that the damage behavior of the lumbar and lower thoracic vertebral body is dominated by the trabecular bone and may be an important factor in the etiology of vertebral fracture. [source] Protein crystal growth with a two-liquid system and stirring solutionJOURNAL OF SYNCHROTRON RADIATION, Issue 1 2004Hiroaki Adachi We developed two novel methods for growing large, high-quality protein crystals. A two-liquid system enables the convenient extraction of protein crystals without causing mechanical damage due to growth at the interface between two liquids. Since this system does not require limitations on solution volume, it is also suitable for the seed technique, and for growing large crystals. Another new concept is the mild stirring of the solution using the Floating And Stirring Technique (FAST) and the Micro-stirring technique. When compared to conventional techniques, both techniques result in a reduced number of crystals, as well as the growth of large crystals. [source] A study on the behavior of a cylindrical type Li-Ion secondary battery under abnormal conditions. Über das Verhalten eines zylindrischen Li-Ionen Akkumulators unter abnormalen BedingungenMATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 5 2010S. Kim zylindrische Li-Ionen Akkumulatoren; mechanisches Verhalten; abnormale Bedingungen; Separator Abstract Li-ion (lithium ion) secondary batteries are rechargeable batteries in which lithium ions move between the cathode and the anode. Lithium is not as safe as nickel cadmium (NiCd), and the Li-ion battery can under some conditions increase in temperature and ignite abnormal conditions which includes overcharging, being subjected to an impact, or being hit by a projectile. Before studying causes of Li-ion battery explosions, the term "abnormal condition" was defined. Next, to check the mechanical conditions, an impact test by a free falling object of 9.1 kg weight made of steel was carried out. After the impact test, the damage of the separator around the hollow of the jelly roll in the cell was observed. Following this, the same cell's electrochemical conditions were assessed through a heating test to determine the potential thermal runaway. Finally, to analyze the mechanical damage to the Li-ion batteries during the charging and the impact test, a finite element analysis was performed using LS-DYNA and ABAQUS software. A cylindrical type Li-ion secondary battery was selected for the impact test, heating test, and simulation. The test and simulation results provided insights into the extent to which cylindrical cells can endure abnormal conditions. [source] Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf compositionNEW PHYTOLOGIST, Issue 3 2007Terrence J. Sullivan Summary ,,Plants have multiple strategies to deal with herbivory, ranging from chemical or physical defenses to tolerating damage and allocating resources for regrowth. Grasses usually tolerate herbivory, but for some cool-season grasses, their strategy may depend upon their interactions with intracellular symbionts. Neotyphodium endophytes are common symbionts in pooid grasses, and, for some host species, they provide chemical defenses against both vertebrate and invertebrate herbivores. ,,Here, it was tested whether defenses provided by Neotyphodium coenophialum in Lolium arundinaceum (tall fescue) are inducible by both mechanical damage and herbivory from an invertebrate herbivore, Spodoptera frugiperda (fall armyworm), via a bioassay and by quantifying mRNA expression for lolC, a gene required for loline biosysnthesis. ,,Both mechanical and herbivore damage had a negative effect on the reproduction of a subsequent herbivore, Rhopalosiphum padi (bird cherry-oat aphid), and herbivore damage caused an up-regulation of lolC. Uninfected grass hosts also had significantly higher foliar N% and lower C : N ratio compared with infected hosts, suggesting greater allocation to growth rather than defense. ,,For L. arundinaceum, N. coenophialum appears to switch its host's defensive strategy from tolerance via compensation to resistance. [source] Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responsesPHYSIOLOGIA PLANTARUM, Issue 1 2010Francesco Orsini Plants have evolved complex mechanisms to perceive environmental cues and develop appropriate and coordinated responses to abiotic and biotic stresses. Considerable progress has been made towards a better understanding of the molecular mechanisms of plant response to a single stress. However, the existence of cross-tolerance to different stressors has proved to have great relevance in the control and regulation of organismal adaptation. Evidence for the involvement of the signal peptide systemin and jasmonic acid in wound-induced salt stress adaptation in tomato has been provided. To further unravel the functional link between plant responses to salt stress and mechanical damage, transgenic tomato (Lycopersicon esculentum Mill.) plants constitutively expressing the prosystemin cDNA have been exposed to a moderate salt stress. Prosystemin over-expression caused a reduction in stomatal conductance. However, in response to salt stress, prosystemin transgenic plants maintained a higher stomatal conductance compared with the wild-type control. Leaf concentrations of abscissic acid (ABA) and proline were lower in stressed transgenic plants compared with their wild-type control, implying that either the former perceived a less stressful environment or they adapted more efficiently to it. Consistently, under salt stress, transgenic plants produced a higher biomass, indicating that a constitutive activation of wound responses is advantageous in saline environment. Comparative gene expression profiling of stress-induced genes suggested that the partial stomatal closure was not mediated by ABA and/or components of the ABA signal transduction pathway. Possible cross-talks between genes involved in wounding and osmotic stress adaptation pathways in tomato are discussed. [source] Engineering and Design of Wear and Corrosion Resistant PVD Coatings Regarding the Exceptional Properties of Magnesium SubstratesPLASMA PROCESSES AND POLYMERS, Issue S1 2007Holger Hoche Abstract Although magnesium alloys were popular in the first half of the 20th century, the bad corrosion properties prevented their breakthrough in industrial mass production. Since the technology for the production of high purity alloys was introduced in the 1970s, magnesium alloys became more and more in the focus of industrial attention. Today magnesium alloys are state-of-the-art in construction parts in automotive industry. Despite its outstanding properties like good castability, low density and nearly unlimited availability the negative aspects like weak corrosion and wear behaviour still limit the application of magnesiums in industry, due to the need of sufficient surface protection (E. Aghion, B. Bronfin, Mater. Sci. Forum2000, 350,351, 19). Today, plasma electrolytic anodisations are state-of-the-art (H. Haferkamp, "Magnesiumkorrosion,Prozesse, Schutz von Anode und Kathode", in: Moderne Beschichtungsverfahren, F.-W. Bach, T. Duda, Eds., Wiley-VCH, Weinheim 2000, ISBN 3-527-30117-8, 242; M. Thoma, Metalloberfläche1984, 38, 393; T. W. Jelinek, Galvanotechnik2003, 94, 46; A. Kuhn, Galvanotechnik2003, 94, 1114). They provide acceptable corrosion resistance and protect the magnesium from mechanical damage due to their high hardness. On the other hand, their high porosity limits their use in combination with electrochemically noble materials, leading to galvanic corrosion (J. Senf, "Untersuchung und Beschreibung von Magnesiumdruckgusslegierungen unter tribologischer, korrosiver und mechanisch-korrosiver Beanspruchung, Berichte aus der Werkstofftechnik", Shaker Verlag, Germany 2001, ISBN 3-8265-8428-7). In addition, the high surface roughness of the plasma electrolytic anodisations restricts their use in tribological applications, particularly under sliding conditions (H. Hoche, "Grundlegende Untersuchungen zur Entwicklung von PVD-Beschichtungen auf Magnesiumlegierungen im Hinblick auf die Erhöhung der Verschleißbeständigkeit und unter Berücksichtigung des Korrosionsverhaltens", Dissertation, TU-Darmstadt D17, Shaker Verlag, Germany 2004). In order to achieve smooth surfaces with high quality, the PVD technology moves into the centre of interest. Since the 1980s PVD coatings are well established and widely used for different industrial applications, mainly for steel and tool coatings. The authors were the first who carried out serious studies on the development of PVD coatings for magnesium alloys in 1999 (J. Senf, "Untersuchung und Beschreibung von Magnesiumdruckgusslegierungen unter tribologischer, korrosiver und mechanisch-korrosiver Beanspruchung, Berichte aus der Werkstofftechnik", Shaker Verlag, Germany 2001, ISBN 3-8265-8428-7; H. Hoche, "Grundlegende Untersuchungen zur Entwicklung von PVD-Beschichtungen auf Magnesiumlegierungen im Hinblick auf die Erhöhung der Verschleißbeständigkeit und unter Berücksichtigung des Korrosionsverhaltens", Dissertation, TU-Darmstadt D17, Shaker Verlag, Germany 2004). The extensive research activities lead to the recent development of a coating system, which provides both, good wear properties as well as good corrosion behaviour. [source] Infestation of coconut fruits by Aceria guerreronis enhances the pest status of the coconut moth Atheloca subrufellaANNALS OF APPLIED BIOLOGY, Issue 2 2009S.W.J. De Santana Abstract The coconut mite, Aceria guerreronis (Acari: Eriophyidae) and the coconut moth, Atheloca subrufella (Lepidoptera: Phycitidae), exploit the same habitat,meristematic region underneath the coconut fruit perianth. The coconut fruit perianth, however, is a tight structure allowing free colonisation of the meristematic region of the fruit only by small arthropods such as the eriophyid and tarsonemid mites. Fruits infested by the mites develop different levels of necrosis around the perianth providing access to colonising larvae of the coconut moth, which bore the fruit under the perianth resulting in fruit abortion. Based on field observations, we hypothesise that A. subrufella will colonise coconut fruits only if they exhibit damage on the perianth such as the necrosis caused by the coconut mite. Fruits with and without necrosis were collected from different production areas located in three different states along the Brazilian Atlantic coast and inspected for infestation with coconut moth larvae. In the laboratory, coconut fruits with and without necrosis were offered to moths for oviposition preference and tested for colonisation by neonate and third instar larvae. The results showed that the moths showed no preference for fruits with or without necrosis for oviposition and, hence, neonate larvae have to go under the perianth bract to reach the meristematic region of the fruit. However, neonate larvae were unable to colonise fruits without necrosis (0%) compared to 23% and 60% of fruit colonisation success when exhibiting mite necrosis or mechanical damage, respectively. Similar results were found with respect to older coconut moth larvae. Thus, the data support the hypothesis that the indirect interaction through previous fruit colonisation and necrosis caused by the coconut mite allows the larvae of A. subrufella to be a key pest of coconut fruits. [source] Case study on eye abnormalities in tank-reared hybrid walleyes (Sander vitreus×S. canadensis)AQUACULTURE RESEARCH, Issue 5 2006Mary Ann Garcia-Abiado Abstract Hybrid walleye is important for recreational fisheries and is a potential aquaculture species in the north central region of the United States. Stress related to intensive culture conditions has been documented to cause eye lesions in fish. Finfish eyes do not have eyelids, hence the cornea is permanently exposed to mechanical damage and toxic substances. We documented various disorders of the eye in juvenile hybrid walleyes reared in a flow-through tank system. Abnormalities include exophthalmia, enophthalmia, unilateral loss of globe and bilateral loss of globe. These lesions negatively affected body weight, specific growth rate and condition factor of hybrid walleyes reared in tanks. [source] Micro-injection of lygus salivary gland proteins to simulate feeding damage in alfalfa and cotton flowers ,ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2005Kenneth A. Shackel Abstract Alfalfa and cotton flowers were pierced with small glass capillaries of an overall size and shape similar to that of Lygus stylets, and injected with small quantities (6 to 100 nL) of solutions that contained Lygus salivary enzymes. Crude and partially purified protein solutions from Lygus heads and isolated salivary glands showed substantial polygalacturonase (PG) activity, as has been previously reported. Following injection with both crude and partially purified protein solutions, as well as with pure fungal and bacterial PGs, flowers of both alfalfa and cotton exhibited damage similar to that caused by Lygus feeding. Injection with the same volume of a buffer control as well as a buffer control containing BSA at a comparable protein concentration (approximately 6 ,g/mL) showed no symptoms. These results are consistent with a previously suggested hypothesis that the extensive tissue damage caused by Lygus feeding is primarily due to the action of the PG enzyme on the host tissue, rather than to mechanical damage caused by the insect stylet. Substantial genotypic variation for a PG inhibiting protein (PGIP) exists in alfalfa and cotton. We, therefore, suggest that breeding and selection for increased native PGIP levels, or transformation with genes encoding PGIP from other plant species, may be of value in obtaining alfalfa and cotton varieties that are more resistant to Lygus feeding damage. Arch. Insect Biochem. Physiol. 58:69,83, 2005. © 2005 Wiley-Liss, Inc. [source] Do physical forces contribute to cryodamage?BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009Joseph Saragusty Abstract To achieve the ultimate goal of both cryosurgery and cryopreservation, a thorough understanding of the processes responsible for cell and tissue damage is desired. The general belief is that cells are damaged primarily due to osmotic effects at slow cooling rates and intracellular ice formation at high cooling rates, together termed the "two factor theory." The present study deals with a third, largely ignored component,mechanical damage. Using pooled bull sperm cells as a model and directional freezing in large volumes, samples were frozen in the presence or absence of glass balls of three different diameters: 70,110, 250,500, and 1,000,1,250,µm, as a means of altering the surface area with which the cells come in contact. Post-thaw evaluation included motility at 0,h and after 3,h at 37°C, viability, acrosome integrity, and hypoosmotic swelling test. Interactions among glass balls, sperm cells, and ice crystals were observed by directional freezing cryomicroscopy. Intra-container pressure in relation to volume was also evaluated. The series of studies presented here indicate that the higher the surface area with which the cells come in contact, the greater the damage, possibly because the cells are squeezed between the ice crystals and the surface. We further demonstrate that with a decrease in volume, and thus increase in surface area-to-volume ratio, the intra-container pressure during freezing increases. It is suggested that large volume freezing, given that heat dissipation is solved, will inflict less cryodamage to the cells than the current practice of small volume freezing. Biotechnol. Bioeng. 2009; 104: 719,728 © 2009 Wiley Periodicals, Inc. [source] Organ culture, but not hypothermic storage, facilitates the repair of the corneal endothelium following mechanical damageACTA OPHTHALMOLOGICA, Issue 4 2010Jana Nejepinska Abstract. Purpose:, To evaluate the reparative capacity of the mechanically injured endothelium of corneas stored under organ culture (OC) or hypothermic conditions. Methods:, The central endothelium of 12 pairs of human corneas with similar endothelial parameters was damaged to create a 1 mm2 lesion. One cornea from each pair was stored under OC and one under hypothermic conditions. The endothelial cell density (ECD), coefficient of variation, hexagonality and percentage of dead cells were assessed before and after damage and on days 7, 14, 21 and 28 of storage. Results:, The mean ECD of corneas subsequently stored under OC or hypothermic conditions was 2764/mm2. Immediately after damage, a denuded Descemet's membrane with a few remaining dead cells was observed at the injured area. After 7 days of storage under OC conditions, almost no dead cells were observed at the place of injury. A non-significant worsening of the qualitative parameters (polymegatism and pleomorphism) was found. After 14 days, ECD was 1933/mm2 and 2478/mm2 centrally and pericentrally, respectively. Similar values were found after 21 and 28 days of storage. The lesions with remnant dead cells persisted throughout hypothermic preservation. From day 14 the corneas became cloudy and in poor condition, while the pericentral ECD was 2523/mm2. Conclusion:, The reparative capacity of the cornea is maintained under OC but not under hypothermic conditions. For corneas containing dead endothelial cells, OC is therefore the method of choice because it may improve the quality of the stored tissue. [source] |