Home About us Contact | |||
Mechanical Coupling (mechanical + coupling)
Selected AbstractsElectronic and Mechanical Coupling in Bent ZnO NanowiresADVANCED MATERIALS, Issue 48 2009Xiaobing Han A red shift of the exciton of ZnO nanowires is efficiently produced by bending strain, as demonstrated by a low-temperature (81,K) cathodoluminescence (CL) study of ZnO nanowires bent into L- or S-shapes. The figure shows a nanowire (Fig. a) with the positions of CL measurements marked. The corresponding CL spectra,revealing a peak shift and broadening in the region of the bend,are shown in Figure b. [source] Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: Role of random-walk persistenceCYTOSKELETON, Issue 4 2005S. Huang Abstract Coordinated, cohort cell migration plays an important role in the morphogenesis of tissue patterns in metazoa. However, individual cells intrinsically move in a random walk-like fashion when studied in vitro. Hence, in the absence of an external orchestrating influence or template, the emergence of cohort cell migration must involve a symmetry-breaking event. To study this process, we used a novel experimental system in which multiple capillary endothelial cells exhibit spontaneous and robust cohort migration in the absence of chemical gradients when cultured on micrometer-scale extracellular matrix islands fabricated using microcontact printing. A computational model suggested that directional persistence of random-walk and dynamic mechanical coupling of adjacent cells are the critical control parameters for this symmetry-breaking behavior that is induced in spatially-constrained cell ensembles. The model predicted our finding that fibroblasts, which exhibit a much shorter motility persistence time than endothelial cells, failed to undergo symmetry breaking or produce cohort migration on the matrix islands. These findings suggest that cells have intrinsic motility characteristics that are tuned to match their role in tissue patterning. Our results underscore the importance of studying cell motility in the context of cell populations, and the need to address emergent features in multicellular organisms that arise not only from cell-cell and cell-matrix interactions, but also from properties that are intrinsic to individual cells. Cell Motil. Cytoskeleton 61:201,213, 2005. © 2005 Wiley-Liss, Inc. [source] Influence of controlled immediate loading and implant design on peri-implant bone formationJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 2 2007Katleen Vandamme Abstract Aim: Tissue formation at the implant interface is known to be sensitive to mechanical stimuli. The aim of the study was to compare the bone formation around immediately loaded versus unloaded implants in two different implant macro-designs. Material and Methods: A repeated sampling bone chamber with a central implant was installed in the tibia of 10 rabbits. Highly controlled loading experiments were designed for a cylindrical (CL) and screw-shaped (SL) implant, while the unloaded screw-shaped (SU) implant served as a control. An F -statistic model with ,=5% determined statistical significance. Results: A significantly higher bone area fraction was observed for SL compared with SU (p<0.0001). The mineralized bone fraction was the highest for SL and significantly different from SU (p<0.0001). The chance that osteoid- and bone-to-implant contact occurred was the highest for SL and significantly different from SU (p<0.0001), but not from CL. When bone-to-implant contact was observed, a loading (SL versus SU: p=0.0049) as well as an implant geometry effect (SL versus CL: p=0.01) was found, in favour of the SL condition. Conclusions: Well-controlled immediate implant loading accelerates tissue mineralization at the interface. Adequate bone stimulation via mechanical coupling may account for the larger bone response around the screw-type implant compared with the cylindrical implant. [source] The structure and function of auditory chordotonal organs in insectsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2004Jayne E. Yack Abstract Insects are capable of detecting a broad range of acoustic signals transmitted through air, water, or solids. Auditory sensory organs are morphologically diverse with respect to their body location, accessory structures, and number of sensilla, but remarkably uniform in that most are innervated by chordotonal organs. Chordotonal organs are structurally complex Type I mechanoreceptors that are distributed throughout the insect body and function to detect a wide range of mechanical stimuli, from gross motor movements to air-borne sounds. At present, little is known about how chordotonal organs in general function to convert mechanical stimuli to nerve impulses, and our limited understanding of this process represents one of the major challenges to the study of insect auditory systems today. This report reviews the literature on chordotonal organs innervating insect ears, with the broad intention of uncovering some common structural specializations of peripheral auditory systems, and identifying new avenues for research. A general overview of chordotonal organ ultrastructure is presented, followed by a summary of the current theories on mechanical coupling and transduction in monodynal, mononematic, Type 1 scolopidia, which characteristically innervate insect ears. Auditory organs of different insect taxa are reviewed, focusing primarily on tympanal organs, and with some consideration to Johnston's and subgenual organs. It is widely accepted that insect hearing organs evolved from pre-existing proprioceptive chordotonal organs. In addition to certain non-neural adaptations for hearing, such as tracheal expansion and cuticular thinning, the chordotonal organs themselves may have intrinsic specializations for sound reception and transduction, and these are discussed. In the future, an integrated approach, using traditional anatomical and physiological techniques in combination with new methodologies in immunohistochemistry, genetics, and biophysics, will assist in refining hypotheses on how chordotonal organs function, and, ultimately, lead to new insights into the peripheral mechanisms underlying hearing in insects. Microsc. Res. Tech. 63:315,337, 2004. © 2004 Wiley-Liss, Inc. [source] Large-scale extrusion processing and characterization of hybrid nylon-6/SiO2 nanocompositesPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 4 2004Monserrat García Abstract Solution impregnations, pulltrusion and film stacking are widely used methods to prepare thermoplastic composite materials. Extruders are used to melt the polymer and to incorporate fibers into the polymer in order to modify physical properties. In this article, the compounding of colloidal silica nanoparticles filled polyamide-6 (PA-6) is achieved using a twin-screw extruder, which has a significant market share due to its low cost and easy maintenance. The experiments were performed at 250 rpm and the bulk throughput was 6,kg,h,1 with a pump pressure of 30 bars. The composites were characterized with nuclear magnetic resonance (NMR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). As determined by WAXD, the PA-6 showed higher amounts of , -phase when compared to other synthesis methods such as in situ polymerization. TEM pictures showed that the silica particles aggregated nevertheless, upon addition of 14% (w/w) silica the E-modulus increased from 2.7 to 3.9,GPa indicating that an effective mechanical coupling with the polymer was achieved. The behavior, illustrated with dynamic mechanical analysis (DMA) curves, indicated that in general when a filled system is compared to unfilled material, the values of the moduli (E, and E,) increased and tan , decreased. Determination of molecular mass distribution of the samples by means of size exclusion chromatography (SEC) coupled to a refractive index (RI), viscosity (DV) and light scattering (LS) detector revealed that the addition of silica did not decrease the average molecular weight of the polymer matrix, which is of importance for composite applications. Copyright © 2004 John Wiley & Sons, Ltd. [source] |