Mechanical Competence (mechanical + competence)

Distribution by Scientific Domains


Selected Abstracts


Mechanical implications of estrogen supplementation in early postmenopausal women

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2010
Felix W Wehrli
Abstract Whereas the structural implications of drug intervention are well established, there are few data on the possible mechanical consequences of treatment. In this work we examined the changes in elastic and shear moduli (EM and SM) in a region of trabecular bone in the distal radius and distal tibia of early postmenopausal women on the basis of MRI-based micro-finite-element (µFE) analysis. Whole-section axial stiffness (AS) encompassing both trabecular and cortical compartments was evaluated as well. The study was conducted on previously acquired high-resolution images at the two anatomic sites. Images were processed to yield a 3D voxel array of bone-volume fraction (BVF), which was converted to a µFE model of hexahedral elements in which tissue modulus was set proportional to voxel BVF. The study comprised 65 early postmenopausal women (age range 45 to 55 years), of whom 32 had chosen estrogen supplementation (estradiol group); the remainder had not (control group). Subjects had been scanned at baseline and 12 and 24 months thereafter. At the distal tibia, EM and SM were reduced by 2.9% to 5.5% in the control group (p,<,.05 to <.005), but there was no change in the estradiol subjects. AS decreased 3.9% (4.0%) in controls (p,<,.005) and increased by 5.8% (6.2%) in estradiol group subjects (p,<,.05) at 12 (24) months. At the distal radius, EM and SM changes from baseline were not significant, but at both time points AS was increased in estradiol group subjects and decreased in controls (p,<,.005 to <.05), albeit by a smaller margin than at the tibia. EM and SM were strongly correlated with BV/TV (r2,=,0.44 to 0.92) as well as with topologic parameters expressing the ratio of plates to rods (r2,=,0.45 to 0.82), jointly explaining up to 96% of the variation in the mechanical parameters. Finally, baseline AS was strongly correlated between the two anatomic sites (r2,=,0.58), suggesting that intersubject variations in the bone's mechanical competence follows similar mechanisms. In conclusion, the results demonstrate that micro-MRI-based µFE models are suited for the study of the mechanical implications of antiresorptive treatment. The data further highlight the anabolic effect of short-term estrogen supplementation. © 2010 American Society for Bone and Mineral Research [source]


Enhanced Chondrogenesis and Wnt Signaling in PTH-Treated Fractures,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2007
Sanjeev Kakar
Abstract Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the time-course of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling. Introduction: Since FDA approval of PTH [PTH(1,34); Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Materials and Methods: Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 ,g/kg PTH(1,34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Results: Quantitative ,CT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to osteogenesis over the course of the repair process. In addition, chondrocyte hypertrophy occurred earlier in the PTH-treated callus tissues. Analysis of the expression of potential mediators of PTH actions showed that PTH treatment significantly induced the expression of Wnts 4, 5a, 5b, and 10b and increased levels of unphosphorylated, nuclear localized ,-catenin protein, a central feature of canonical Wnt signaling. Conclusions: These results showed that the PTH-mediated enhancement of fracture repair is primarily associated with an amplification of chondrocyte recruitment and maturation in the early fracture callus. Associated with these cellular effects, we observed an increase in canonical Wnt signaling supporting the conclusion that PTH effects on bone repair are mediated at least in part through the activation of Wnt-signaling pathways. [source]


Paricalcitol [19-Nor-1,25-(OH)2D2] in the Treatment of Experimental Renal Bone Disease,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2006
Jarkko Jokihaara
Abstract Paricalcitol is a less hypercalcemic vitamin D analog that has been shown to suppress secondary hyperparathyroidism and to prevent the associated histomorphometric changes in bone. In this study, we show that paricalcitol also ameliorates the renal insufficiency-induced loss of bone mineral and the mechanical competence of bone. Introduction: Renal bone disease is a common consequence of chronic renal insufficiency and the associated secondary hyperparathyroidism (SH). Paricalcitol [19-nor-1,25(OH)2D2] has been shown to ameliorate SH and prevent renal failure,induced histomorphometric changes in bone with minimal calcemic and phosphatemic activity. However, information about its efficacy on restoration of bone structural strength is lacking. In this study, we explored the effects of paricalcitol treatment on bone structure and strength in a model of advanced renal disease. Materials and Methods: Forty-five 8-week-old rats were randomly assigned to either surgical 5/6 nephrectomy (NTX) or Sham-operation. After a 15-week postoperative disease progression period, the NTX rats were further allocated to uremic control (NTX) and treatment (NTX + paricalcitol) groups, the latter of which received paricalcitol for the subsequent 12 weeks. After 27 weeks, the animals were killed, plasma samples were collected, and both femora were excised for comprehensive analysis of the femoral neck and midshaft (pQCT and biomechanical testing). Results: High mortality that exceeded 30% was observed in both NTX groups. NTX induced over a 13-fold increase in plasma PTH, whereas this increase was only 5-fold after paricalcitol treatment. At the femoral neck, NTX was associated with an 8.1% decrease (p < 0.05) in vBMD and a 16% decrease in breaking load (p < 0.05) compared with the Sham group, whereas paricalcitol treatment completely prevented these changes. At the femoral midshaft, the NTX resulted in a 6.6% decrease in cortical BMD (p < 0.01 versus Sham), and this change was also prevented by paricalcitol. Conclusions: Paricalcitol administration prevented renal insufficiency-associated decreases in BMD in the femoral neck and the femoral midshaft and restored bone strength in the femoral neck. Therefore, paricalcitol can efficiently ameliorate renal insufficiency-induced loss of bone mineral and mechanical competence of bone. [source]


Effect of 8-Month Vertical Whole Body Vibration on Bone, Muscle Performance, and Body Balance: A Randomized Controlled Study,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2003
Saila Torvinen MD
Abstract Recent animal studies have given evidence that vibration loading may be an efficient and safe way to improve mass and mechanical competence of bone, thus providing great potential for preventing and treating osteoporosis. Randomized controlled trials on the safety and efficacy of the vibration on human skeleton are, however, lacking. This randomized controlled intervention trial was designed to assess the effects of an 8-month whole body vibration intervention on bone, muscular performance, and body balance in young and healthy adults. Fifty-six volunteers (21 men and 35 women; age, 19-38 years) were randomly assigned to the vibration group or control group. The vibration intervention consisted of an 8-month whole body vibration (4 min/day, 3-5 times per week). During the 4-minute vibration program, the platform oscillated in an ascending order from 25 to 45 Hz, corresponding to estimated maximum vertical accelerations from 2g to 8g. Mass, structure, and estimated strength of bone at the distal tibia and tibial shaft were assessed by peripheral quantitative computed tomography (pQCT) at baseline and at 8 months. Bone mineral content was measured at the lumbar spine, femoral neck, trochanter, calcaneus, and distal radius using DXA at baseline and after the 8-month intervention. Serum markers of bone turnover were determined at baseline and 3, 6, and 8 months. Five performance tests (vertical jump, isometric extension strength of the lower extremities, grip strength, shuttle run, and postural sway) were performed at baseline and after the 8-month intervention. The 8-month vibration intervention succeeded well and was safe to perform but had no effect on mass, structure, or estimated strength of bone at any skeletal site. Serum markers of bone turnover did not change during the vibration intervention. However, at 8 months, a 7.8% net benefit in the vertical jump height was observed in the vibration group (95% CI, 2.8-13.1%; p = 0.003). On the other performance and balance tests, the vibration intervention had no effect. In conclusion, the studied whole body vibration program had no effect on bones of young, healthy adults, but instead, increased vertical jump height. Future human studies are needed before clinical recommendations for vibration exercise. [source]


How Well Are Bones Designed to Resist Fracture?,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2003
John D Currey
Abstract Because bone is obviously in some way adapted to the loads falling on it and because fracture is usually the failure of mechanical competence of main clinical importance, it is often thought that bones are adapted to resist fracture. In this perspective, I consider that this may not be the case. Bones may be designed to be very stiff, and therefore highly mineralized, and therefore brittle; they may be adapted to normal loads, but not to the characteristic loads occurring in falls, or may be very poorly designed to stop cracks traveling once they have started. Bones may also potentially fail in completely contrasting modes, and therefore their design has to be a compromise that does not resist either mode completely successfully. The greatly differing fracture incidences in different bones seen in pre-senile adults suggest that safety factors have been adapted, over evolutionary time, to produce the best compromise for a host of different design constraints. [source]


Bone Strength at Clinically Relevant Sites Displays Substantial Heterogeneity and Is Best Predicted From Site-Specific Bone Densitometry

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2002
Felix Eckstein Ph.D.
Abstract In this study we test the hypotheses that mechanical bone strength in elderly individuals displays substantial heterogeneity among clinically relevant skeletal sites, that ex situ dual-energy X-ray absorptiometry (DXA) provides better estimates of bone strength than in situ DXA, but that a site-specific approach of bone densitometry is nevertheless superior for optimal prediction of bone failure under in situ conditions. DXA measurements were obtained of the lumbar spine, the left femur, the left radius, and the total body in 110 human cadavers (age, 80.6 ± 10.5 years; 72 female, 38 male), including the skin and soft tissues. The bones were then excised, spinal and femoral DXA being repeated ex situ. Mechanical failure tests were performed on thoracic vertebra 10 and lumbar vertebra 3 (compressive loading of a functional unit), the left and right femur (side impact and vertical loading configuration), and the left and right distal radius (fall configuration, axial compression, and 3-point-bending). The failure loads displayed only very moderate correlation among sites (r = 0.39 to 0.63). Ex situ DXA displayed slightly higher correlations with failure loads compared with those of in situ DXA, but the differences were not significant and relatively small. Under in situ conditions, DXA predicted 50-60% of the variability in bone failure loads at identical (or closely adjacent) sites, but only around 20-35% at distant sites, advocating a site-specific approach of densitometry. These data suggest that mechanical competence in the elderly is governed by strong regional variation, and that its loss in osteoporosis may not represent a strictly systemic process. [source]


Trabecular bone volume fraction mapping by low-resolution MRI

MAGNETIC RESONANCE IN MEDICINE, Issue 1 2001
M.A. Fernández-Seara
Abstract Trabecular bone volume fraction (TBVF) is highly associated with the mechanical competence of trabecular bone. TBVF is ordinarily measured by histomorphometry from bone biopsies or, noninvasively, by means of high-resolution microcomputed tomography and, more recently, by micro-MRI. The latter methods require spatial resolution sufficient to resolve trabeculae, along with segmentation techniques that allow unambiguous assignment of the signal to bone or bone marrow. In this article it is shown that TBVF can be measured under low-resolution conditions by exploiting the attenuation of the MR signal resulting from fractional occupancy of the imaging voxel by bone and bone marrow, provided that a reference signal is available from a marrow volume devoid of trabeculation. The method requires accurate measurement of apparent proton density, which entails correction for various sources of error. Key among these are the spatial nonuniformity in the RF field amplitude and effects of the slice profile, which are determined by B1 field mapping and numerical integration of the Bloch equations, respectively. By contrast, errors from variations in bone marrow composition (hematopoietic vs. fatty) between trabecular and reference site are predicted to be small and usually negligible. The method was evaluated in phantoms and in vivo in the distal radius and found to be accurate to 1% in marrow volume fraction. Finally, in a group of 12 patients of varying skeletal status, TBVF in the calcaneus was found to strongly correlate with integral bone mineral density of the lumbar vertebrae (r2 = 0.83, p < 0.0001). The method may fail in large imaging objects such as the human trunk at high magnetic field where standing wave and RF penetration effects cause intensity variations that cannot be corrected. Magn Reson Med 46:103,113, 2001. © 2001 Wiley-Liss, Inc. [source]