MCP-1

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by MCP-1

  • mcp-1 expression
  • mcp-1 level
  • mcp-1 production
  • mcp-1 secretion

  • Selected Abstracts


    TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells

    ACTA PHYSIOLOGICA, Issue 3 2010
    S. Liu
    Abstract Aim:, TRAF6 is a unique adaptor protein of the tumour necrosis factor receptor-associated factor family that mediates both tumour necrosis factor receptor (TNFR) and interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signalling. Activation of IL-1R/TLR and TNFR pathways in renal tubular cells contributes to renal injury. This study aimed to investigate if blockade of lipopolysaccharide (LPS)-triggered TLR4 signalling by small interfering RNA (siRNA) targeting TRAF6 protects survival and inhibits inflammatory response in isolated rat renal proximal tubular cells (PTCs). Methods:, PTCs isolated from F344 rat kidneys were transfected with chemically synthesized siRNA targeting TRAF6 mRNA. Real-time quantitative PCR was applied to measure mRNA level of TRAF6, TNF-,, IL-6 and monocyte chemoattractant protein-1 (MCP-1). Protein levels of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase, caspase 3 and cleaved caspase 3 were evaluated by Western blotting. Cell viability was analysed with XTT reagents. Results:, We found that the TRAF6 gene was effectively silenced in PTCs using siRNA. TRAF6 knockdown resulted in reduced TNF-, and IL-6 mRNA expression upon LPS challenge. LPS-induced phosphorylation of JNK and p38 was attenuated in TRAF6 siRNA-transfected cells while the change in the phosphorylation of ERK was not remarkable. TRAF6 knockdown was associated with increased cell viability and reduced protein level of cleaved caspase-3, both, in the absence and presence of LPS. Conclusion:, Our studies suggest that TRAF6 knockdown may inhibit inflammatory response and promote cell survival upon LPS challenge in primary rat proximal renal tubular cells. [source]


    Caucasian patients with type 2 diabetes mellitus have elevated levels of monocyte chemoattractant protein-1 that are not influenced by the ,2518 A,G promoter polymorphism

    DIABETES OBESITY & METABOLISM, Issue 5 2005
    B. Zietz
    Aim:, To investigate the association of serum levels and the ,2518 A,G promoter polymorphism of the gene for chemokine monocyte chemoattractant protein-1 (MCP-1), a major chemoattractant of monocytes and activated lymphocytes, with metabolic parameters as well as insulin, leptin and the cytokines tumour necrosis factor-, (TNF-,) and interleukin-6 (IL-6) in 534 Caucasian patients with type 2 diabetes mellitus. Methods:, MCP-1 concentrations were measured by enzyme-linked immunosorbent assay. MCP-1 genotyping was performed by RFLP analysis in a subset of 426 patients. Results:, Two hundred and thirty-one (54.2%) patients were homozygous for the wildtype allele (AA), 156 (36.6%) were heterozygous (AG) and 39 (9.2%) were homozygous for the mutated allele (GG). Allelic frequency was similar to non-diabetic populations (wildtype allele A: 0.73; mutated allele G: 0.27). MCP-1 mean concentrations and percentiles were substantially higher in non-diabetic populations but were not influenced by the genotype (AA: 662.0 ± 323.0 pg/ml; AG: 730.6 ± 491.4 pg/ml; GG: 641.2 ± 323.8 pg/ml). MCP-1 serum levels and genotypes were only marginally related to hormones (insulin and leptin) and cytokines (TNF-, and IL-6). Conclusions:, This is the first study providing MCP-1 levels, percentiles and genotype frequency in a large and representative cohort of patients with type 2 diabetes mellitus. Compared to the literature, MCP-1 levels were found to be substantially higher in patients with type 2 diabetes mellitus. In contrast, genotype frequencies were similar compared to those in non-diabetic patients and were not related to MCP-1 levels. The mechanisms behind these elevated MCP-1 serum levels in type 2 diabetes are not to be explained by simple associations with hormones, cytokines or genotypes. [source]


    Targeted replacement of rodent CCR2 with the human orthologue CCR2B: A mouse model for in vivo analysis of human target-selective small molecule MCP-1 receptor antagonists

    DRUG DEVELOPMENT RESEARCH, Issue 4 2002
    Haydn M. Prosser
    Abstract Rodent models for testing the efficacy of lead compounds are often invalidated by species selectivity of the compounds. The advent of mouse embryonic stem cell technology has allowed the development of genetically engineered mouse strains that incorporate a specific human gene in place of the orthologous mouse gene, a so-called knock-in mouse. This study describes the generation and validation of a mutant mouse line that expresses human CCR2B as a functional substitute for murine CCR2. The human CCR2B knock-in mice are viable and appear normal. In vitro assays indicate that the CCR2B knock-in is functionally expressed, giving a macrophage chemotactic profile in response to JE or MCP-1 that is similar to human peripheral blood monocytes rather than that of a murine macrophage cell line. In addition, the human selective CCR2B antagonist, SB-399721, was a more potent inhibitor of CCR2B knock-in macrophages in response to hMCP-1 than JE. The ability of the human CCR2B gene to functionally substitute for the mouse orthologue in vivo is demonstrated by a normal inflammatory response to intraperitoneal thioglycollate injection. Drug Dev. Res. 55:197,209, 2002. © 2002 Wiley-Liss, Inc. [source]


    Construction of an antibody microarray based on agarose-coated slides

    ELECTROPHORESIS, Issue 3 2007
    Lin-Li Lv
    Abstract The antibody microarray, a high-throughput multiplex immunoassay method, has become a significant tool for quantitative proteomics studies. We describe here the strategies for optimizing the condition of antibody microarray building based on agarose-coated slides. In this study, modified glass slides were robotically printed with capture antibodies against monocyte chemoattractant protein 1 (MCP-1), then dilutions of the cytokine were applied to the arrays, and the protein was detected with biotin-labeled antibody coupled with Cy3-conjugated streptavidin. Thus a protein profiling microarray based on sandwich immunoassay has been established. Various factors in the production of antibody microarrays were analyzed: the capture antibody concentrations, shelf life of the postprinting slides, blocking buffers, and reproducibility of the system. A calibration curve with a correlation coefficient of 0.9995 was established which suggested that the matrix can retain arrayed proteins in near-quantitative fashion. The results revealed high signal uniformity and reproducibility with regard to intra-array (1.3%) and the interarray (8.7%) variation at the capture antibody concentration of 125,µg/mL. Besides, the printed arrays could be stored for at least two months without any apparent change of the performance parameters. [source]


    Fatty acids as metabolic mediators in innate immunity

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 10 2009
    A. Kopp
    Abstract Background, Increasing data support the hypothesis of a local and systemic crosstalk between adipocytes and monocytes mediated by fatty acids. The aim of this study was to characterize the immunomodulatory effects of a large panel of fatty acids on cytokines and chemokines in monocytic THP-1 cells and primary human monocytes. We tested whether anti-inflammatory fatty acids are able to inhibit the binding of lipopolysaccharide (LPS) to its receptor, toll-like receptor/MD-2 (TLR4/MD-2). Materials and methods, Resistin, monocyte chemoattractant protein-1 (MCP-1) and tumour necrosis factor (TNF) were measured by enzyme-linked immunosorbent assay. Proteins were analysed by Western blot. A designed Flag-tagged TLR4/MD-2 fusion protein (LPS trap) was used to investigate the effect of fatty acids on binding of LPS to its receptor. In 30 patients with type 2 diabetes mellitus (T2D), the correlation of serum triglyceride levels with LPS-induced monocyte activation was analysed. Results, Eleven fatty acids investigated exerted differential effects on the monocytic release of cytokines and chemokines. Eicosapentaenoic acid had potent anti-inflammatory effects on human primary monocytes and THP-1 cells; 100 and 200 ,M eicosapentaenoic acid dose-dependently inhibited LPS binding to the LPS trap. LPS-induced release of monocytic MCP-1 and TNF was significantly and positively correlated with serum triglyceride levels in 30 patients with T2D. Conclusions, Monocytic activation is differentially regulated by fatty acids and depends on triglyceride levels in T2D. The main finding of the present study shows that eicosapentaenoic acid inhibits the specific binding of LPS to TLR4/MD-2. Eicosapentaenoic acid represents a new anti-inflammatory LPS-antagonist. [source]


    The role of MAPK in governing lymphocyte adhesion to and migration across the microvasculature in inflammatory bowel disease

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2009
    Franco Scaldaferri
    Abstract Lymphocyte recruitment is a key pathogenic event in inflammatory bowel disease (IBD). Adhesion of T cells to human intestinal microvascular endothelial cells (HIMEC) is mediated by ICAM-1, VCAM-1 and fractalkine (FKN), but the signaling molecules that orchestrate this process have yet to be identified. Because MAPK play an important role in the response of many cell types to pro-inflammatory stimuli, we assessed the functional role of p38 MAPK, p42/44 MAPK and JNK in the regulation of lymphocyte adhesion to and chemotaxis across the microvasculature in IBD. We found that the MAPK were phosphorylated in the bowel microvasculature and human intestinal fibroblasts of patients with IBD but not of healthy individuals. Stimulation of HIMEC with TNF- , triggered phosphorylation of the MAPK, and up-regulation of VCAM-1, FKN and ICAM-1. Blockade of p38 decreased the expression of all MAPK by 50% (p<0.01), whereas inhibition of p42/44 decreased the expression of ICAM-1 and FKN by 50% (p<0.01). Treatment of human intestinal fibroblasts with TNF- , elicited production of IL-8 and MCP-1, which was reduced (p<0.05) by blockade of p38 and p42/44. Finally, blockade of p38 and p42/44 reduced lymphocyte adhesion to (p<0.05) and transmigration across (p<0.05) HIMEC monolayers. These findings suggest a critical role for MAPK in governing lymphocyte influx into the gut in IBD patients, and their blockade may offer a molecular target for blockade of leukocyte recruitment to the intestine. [source]


    Fc, receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcR, adaptor

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2007
    Yutaka Kanamaru
    Abstract Myeloid cells bear Fc receptors (FcR) that mediate inflammatory signaling through the ITAM-containing FcR, adaptor. They express FcR,-associated Fc,RI, which modulate either activating or inhibitory signaling depending on the type of ligand interaction. The role of Fc,RI, in disease progression remains unknown, notably in IgA nephropathy (IgAN), one of major causes of end-stage renal disease, in which large amounts of circulating IgA-immune complexes (IC) may mediate receptor activation. To analyze the involvement of Fc,RI activation in glomerulonephritis (GN), we generated Tg mice expressing a mutated, signaling-incompetent, human Fc,RIR209L that cannot associate with FcR,. Like Fc,RIwt -Tg mice, they developed mesangial IgA deposits but not macrophage infiltration. Fc,RI activation in Fc,RIwt, but not in Fc,RIR209L, Tg mice resulted in marked inflammation with severe proteinuria and leukocyte infiltration in spontaneous IgAN or anti-glomerular basement membrane Ab-induced GN models. Receptor triggering of syngenically transferred Fc,RIwt Tg macrophages into non-Tg animals induced their recruitment into injured kidneys during GN development. Fc,RIwt cross-linking on macrophages activated MAP kinases and production of TNF-, and MCP-1. Moreover, IgA-IC from IgAN patients activated Fc,RI and induced TNF-, production. Thus, Fc,RI activation mediates GN progression by initiating a cytokine/chemokine cascade that promotes leukocyte recruitment and kidney damage. [source]


    Stimulation via Toll-like receptor 9 reduces Cryptococcus neoformans -induced pulmonary inflammation in an IL-12-dependent manner

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2005
    Lorna Edwards
    Abstract Cytosine-phosphate-guanosine-containing oligodeoxynucleotides (CpG ODN) are important vaccine adjuvants that promote Th1-type immune responses. Cryptococcus neoformans is a serious human pathogen that replicates in the lung but may disseminate systemically leading to meningitis, particularly in immunocompromised individuals. Immunization of susceptible C57BL/6 mice with CpG ODN deviates the immune response from a Th2- toward a Th1-type response following infection with C. neoformans. CpG also induces IL-12, TNF, MCP-1 and macrophage nitric oxide production. CD4+ and CD8+ T,cells producing IFN-, increase in frequency, while those producing IL-5 decrease. More importantly, pulmonary eosinophilia is significantly reduced, an effect that depends on IL-12 and CD8+ T,cells but not NK cells. CpG treatment also reduces the burden of C. neoformans in the lung, an effect that is IL-12-, NK cell- and T,cell-independent and probably reflects a direct effect of CpG on pathogen opsonization or an enhancement of macrophage antimicrobial activity. An equivalent beneficial effect is also observed when CpG ODN treatment is delivered during established cryptococcal disease. This is the first study documenting that promotion of lung TLR9 signaling using synthetic agonists enhances host defense. Activation of innate immunity has clear therapeutic potential and may even be beneficial in patients with acquired immune deficiency. [source]


    Cooperation between toll-like receptor,2 and,4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2003
    Nathalie Laflamme
    Abstract In this study we investigated whether induction of toll-like receptor,2 (TLR2) amplifies the effect of a cell wall component derived from gram-positive bacteria, namely peptidoglycan (PGN). Mice received a first systemic lipopolysaccharide (LPS) injection to pre-induce TLR2 in various regions of the brain, and 6,h later, a second administration of either LPS or PGN. The data show a robust transcriptional activation of TLR2, TNF-, and monocyte chemotactic protein-1 (MCP-1) in microglial cells of mice challenged twice with LPS, whereas PGN essentially abolished this response. TLR4 plays a critical role in this process, because C3H/HeJ mice no longer responded to LPS but exhibited a normal reaction to PGN. Conversely, a robust signal for genes encoding innate immune proteinswas found in the brain of TLR2-deficient mice challenged with LPS. However, the second LPS bolus failed to trigger TNF-, and IL-12 in TLR2-deficient mice, while the same treatment caused a strong induction of these genes in the cerebral tissue of wild-type littermates. The present data provide evidence that cooperation exists between TLR4 and TLR2. While TLR4 is absolutely necessary to engage the innate immune response in the brain, TLR2 participates in the regulation of genes encoding TNF-, and IL-12 during severe endotoxemia. Such collaboration between TLR4 and TLR2 may be determinant for the transfer from the innate to the adaptive immunity within the CNS of infected animals. [source]


    Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 6 2009
    J. Kuhle
    Background and purpose:, Amyotrophic lateral sclerosis (ALS) is classically assumed to be a neurodegenerative disorder. Inflammation has been observed in CNS tissue in ALS patients. We investigated the expression and prognostic relevance of proinflammatory chemokines in ALS. Methods:, We analyzed nine chemokines, eotaxin, eotaxin-3, IL-8, IP-10, MCP-1, MCP-4, macrophage derived chemokine (MDC), macrophage inflammatory protein-1, (MIP-1,), and serum thymus and activation- regulated chemokine (TARC) in serum and cerebrospinal fluid (CSF) of 20 ALS- and 20 non-inflammatory neurological disease (NIND)-patients. Results:, MCP-1 and IL-8 levels in CSF in ALS were significantly higher than in NIND (1304 pg/ml vs. 1055 pg/ml, P = 0.013 and 22.7 pg/ml vs. 18.6 pg/ml, P = 0.035). The expression of MCP-1 and IL-8 were higher in CSF than in serum (P < 0.001). There was a trend towards higher MCP-1 CSF levels in ALS patients with shorter time between first symptoms and diagnosis (r = ,0.407; P = 0.075). Conclusions:, We confirmed previous findings of increased MCP-1 levels in CSF of ALS patients. Furthermore, increased levels of IL-8 in CSF suggest a stimulation of a proinflammatory cytokine cascade after microglia activation. We found a tendency for higher MCP-1 values in patients with a shorter diagnostic delay, who are known to have also a shorter survival. This may suggest an association of higher MCP-1 levels with rapidly progressing disease. [source]


    Interferon-, differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2002
    Karl Georg Häusler
    Abstract During bacterial infections of the CNS, activated microglia could support leucocyte recruitment to the brain through the synthesis of cyto- and chemokines. In turn, invading leucocytes may feedback on microglial cells to influence their chemokine release pattern. Here, we analyzed the capacity of interferon-, (IFN,) to serve as such a leucocyte-to-microglia signal. Production of cyto- and chemokines was stimulated in mouse microglia cultures by treatments with lipopolysaccharide (LPS) from Gram-negative Escherichia coli or cell walls from Gram-positive Streptococcus pneumoniae (PCW). IFN, presence during the stimulation (0.1,100 ng/mL) modulated the patterns of LPS- and PCW-induced cyto- and chemokine release in a dose-dependent, potent and complex manner. While amounts of TNF, and IL-6 remained nearly unchanged, IFN, enhanced the production of IL-12, MCP-1 and RANTES, but attenuated that of KC, MIP-1, and MIP-2. Release modulation was obtained with IFN, preincubation (treatment of cells before LPS or PCW administration), coincubation and even delayed addition to an ongoing LPS or PCW stimulation. Together the changes observed for the microglial chemokine release under IFN, would shift the chemoattractive profile from favouring neutrophils to a preferential attraction of monocytes and T lymphocyte populations , as actually seen during the course of bacterial meningitis. The findings support the view of activated microglia as a major intrinsic source for an instant production of a variety of chemokines and suggest that leucocyte-derived IFN, could potentially regulate the microglial chemokine release pattern. [source]


    MyD88 expression in the rat dental follicle: implications for osteoclastogenesis and tooth eruption

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 4 2010
    Dawen Liu
    Liu D, Yao S, Wise GE. MyD88 expression in the rat dental follicle: implications for osteoclastogenesis and tooth eruption. Eur J Oral Sci 2010; 118: 333,341. © 2010 The Authors. Journal compilation © 2010 Eur J Oral Sci Myeloid differentiation factor 88 (MyD88) is a key adaptor molecule in the interleukin (IL)-1 and IL-18 toll-like receptor signaling pathways. Because MyD88 is present in dental follicle (DF) cells in vitro, the purpose of this study was to determine its chronological expression in vivo, as well as its possible role in osteoclastogenesis and tooth eruption. An oligo DNA microarray was used to determine expression of the Myd88 gene in vivo in the DFs from the first mandibular molars of postnatal rats from days 1 to 11. The results showed that MyD88 was expressed maximally on day 3. Using small interfering RNA (siRNA) to knock down MyD88 expression in the DF cells also reduced the expression of the nuclear factor-kappa B-1 (NFKB1) and monocyte chemoattractant protein 1 (MCP-1) genes. Interleukin-1, up-regulated the expression of NFKB1, MCP-1, and receptor activator of nuclear factor kappa B ligand (RANKL), but knockdown of MyD88 nullified this IL-1, effect. Conditioned medium from DF cells with MyD88 knocked down had reduced chemotactic activity for mononuclear cells and reduced osteoclastogenesis, as opposed to controls. In conclusion, the maximal expression of MyD88 in the DF of postnatal day 3 rats may contribute to the major burst of osteoclastogenesis needed for eruption by up-regulating MCP-1 and RANKL expression. [source]


    Transcriptional upregulation of inflammatory cytokines in human intestinal epithelial cells following Vibrio cholerae infection

    FEBS JOURNAL, Issue 17 2007
    Arunava Bandyopadhaya
    Coordinated expression and upregulation of interleukin-1,, interleukin-1,, tumor necrosis factor-,, interleukin-6, granulocyte,macrophage colony-stimulating factor, interleukin-8, monocyte chemotactic protein-1 (MCP-1) and epithelial cell derived neutrophil activator-78, with chemoattractant and proinflammatory properties of various cytokine families, were obtained in the intestinal epithelial cell line Int407 upon Vibrio cholerae infection. These proinflammatory cytokines also showed increased expression in T84 cells, except for interleukin-6, whereas a striking dissimilarity in cytokine expression was observed in Caco-2 cells. Gene expression studies of MCP-1, granulocyte,macrophage colony-stimulating factor, interleukin-1,, interleukin-6 and the anti-inflammatory cytokine transforming growth factor-, in Int407 cells with V. cholerae culture supernatant, cholera toxin, lipopolysaccharide and ctxA mutant demonstrated that, apart from cholera toxin and lipopolysaccharide, V. cholerae culture supernatant harbors strong inducer(s) of interleukin-6 and MCP-1 and moderate inducer(s) of interleukin-1, and granulocyte,macrophage colony-stimulating factor. Cholera toxin- or lipopolysaccharide-induced cytokine expression is facilitated by activation of nuclear factor-,B (p65 and p50) and cAMP response element-binding protein in Int407 cells. Studies with ctxA mutants of V. cholerae revealed that the mutant activates the p65 subunit of nuclear factor-,B and cAMP response element-binding protein, and as such the activation is mediated by cholera toxin-independent factors as well. We conclude that V. cholerae elicits a proinflammatory response in Int407 cells that is mediated by activation of nuclear factor-,B and cAMP response element-binding protein by cholera toxin, lipopolysaccharide and/or other secreted products of V. cholerae. [source]


    Release of monocyte chemoattractant protein (MCP)-1 by a human alveolar epithelial cell line in response to Mycobacterium avium

    FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2000
    Savita P. Rao
    Abstract Clinical strains of Mycobacterium avium isolated from patients with acquired immunodeficiency syndrome, but not a non-clinical laboratory strain (ATCC 25291), were found to stimulate the human alveolar epithelial cell line A549, to produce monocyte chemoattractant protein (MCP)-1. A549 cells were also found to produce elevated levels of MCP-1 in response to sonicates of the clinical strains of M. avium, and surprisingly, the non-clinical strain as well. However, sonic extracts of the clinical strains were found to induce significantly higher levels of MCP-1 production compared to extracts of the non-clinical strain (P<0.001). These data suggest the existence of strain-related differences in antigen expression by M. avium. The clinical and non-clinical strains of M. avium were found to attach and invade, but not replicate in A549 cells indicating that MCP-1 production by A549 cells does require the presence of viable, replicating organisms. Activation of alveolar epithelial cells by exposure to M. avium resulting in the production of chemokines which recruit inflammatory cells to the site of infection may be an important regulatory pathway for the activation of pulmonary host defense. [source]


    Monocyte chemoattractant protein-1 (MCP-1) produced via NF-,B signaling pathway mediates migration of amoeboid microglia in the periventricular white matter in hypoxic neonatal rats

    GLIA, Issue 6 2009
    Y. Y. Deng
    Abstract Monocyte chemoattractant protein-1 (MCP-1), a member of ,-chemokine subfamily, regulates the migration of microglia, monocytes, and lymphocytes to the inflammatory site in the central nervous system. We sought to determine if amoeboid microglial cells (AMC) produce MCP-1 that may be linked to migration of AMC in the corpus callosum periventricular white matter in hypoxic neonatal rats. A striking feature in 1-day-old rats subjected to hypoxia was a marked increase in cell numbers of AMC and immunoexpression of MCP-1 and its receptor (CCR2). By BrdU immunostaining, there was no significant change in the proliferation rate of AMC after hypoxic exposure when compared with the corresponding control rats. When injected intracerebrally into the corpus callosum of 7-day-old postnatal rats, MCP-1 induced the chemotactic migration of AMC to the injection site. In primary microglial cell culture subjected to hypoxia, there was a significant increase in MCP-1 release involving NF-,B signaling pathway. In in vitro chemotaxis assay, the medium derived from hypoxia-treated microglial cultures attracted more migratory microglial cells than that from the control microglial culture. The present results suggest that following a hypoxic insult, AMC in the neonatal rats increase MCP-1 production via NF-,B signaling pathway. This induces the migration and accumulation of AMC from the neighboring areas to the periventricular white matter (PWM). It is concluded that the preponderance and active migration of AMC, as well as them being the main cellular source of MCP-1, may offer an explanation for the PWM being susceptible to hypoxic damage in neonatal brain. © 2008 Wiley-Liss, Inc. [source]


    Increase of MCP-1 (CCL2) in myelin mutant Schwann cells is mediated by MEK-ERK signaling pathway

    GLIA, Issue 8 2008
    Stefan Fischer
    Abstract Macrophages are critically involved in the pathogenesis of genetically caused demyelination, as it occurs in inherited demyelinating neuropathies. On the basis of the observation that upregulation of the Schwann cell-derived chemokine MCP-1 (CCL2) is a pathologically relevant mechanism for macrophage activation in mice heterozygously deficient for the myelin component P0 (P0+/,), we posed the question of the intracellular signaling cascade involved. By using western blot analysis of peripheral nerve lysates the MAP-kinases extracellular signal-regulated kinase 1/2 (ERK1/2) and MAP kinase/ERK kinase 1/2 (MEK1/2) showed an early and constantly increasing activation in P0 mutants. Furthermore, in nerve fibers from the P0+/, mutants, Schwann cell nuclei were much more often positive for phosphorylated ERK1/2 than in nerve fibers from wild type mice. In vitro experiments using the MEK1/2-inhibitor CI-1040 decreased ERK1/2-phosphorylation and MCP-1 expression in a Schwann cell-derived cell line. Finally, systemic application of CI-1040 lead to a decreased ERK1/2-phosphorylation and substantially reduced MCP-1-production in peripheral nerves of P0+/, mutant mice. Our study identifies MEK1/2-ERK1/2 signaling as an important intracellular pathway that connects the Schwann cell mutation with the activation of pathogenetically relevant macrophages in the peripheral nerves. These findings may have important implications for the treatment of inherited peripheral neuropathies in humans. © 2008 Wiley-Liss, Inc. [source]


    Transient expression of endothelins in the amoeboid microglial cells in the developing rat brain

    GLIA, Issue 6 2006
    Chun-Yun Wu
    Abstract Amoeboid microglial cells (AMC) which transiently exist in the corpus callosum in the postnatal rat brain expressed endothelins (ETs), specifically endothelin-1 (ET-1) and ET3 as revealed by real time RT-PCR. ET immunoreactive AMC occurred in large numbers at birth, but were progressively reduced with age and were undetected in 14 days. In rats subjected to hypoxia exposure, ET immunoexpression in AMC was reduced but the incidence of apoptotic cells was not increased when compared with the control suggesting that this was due to its downregulation that may help regulate the constriction of blood vessels bearing ET-A receptor. AMC were endowed ET-B receptor indicating that ET released by the cells may also act via an autocrine manner. In microglia activated by lipopolysaccharide (LPS), ET-1 mNA expression coupled with that of monocyte chemoattractant protein (MCP-1) and stromal derived factor-1 (SDF-1) was markedly increased; ET-3 mRNA, however, remained unaffected. AMC exposed to oxygen glucose deprivation (OGD) in vitro resulted in increase in both ET-1 and ET-3 mRNA expression. It is suggested that the downregulated ETs expression in vivo of AMC subjected to hypoxia as opposed to its upregulated expression in vitro may be due to the complexity of the brain tissue. Furthermore, the differential ET-1 and ET-3 mRNA expression in LPS and OGD treatments may be due to different signaling pathways independently regulating the two isoforms. The present novel finding has added microglia as a new cellular source of ET that may take part in multiple functions including regulating vascular constriction and chemokines release. © 2006 Wiley-Liss, Inc. [source]


    Altered immune response to CNS viral infection in mice with a conditional knock-down of macrophage-lineage cells

    GLIA, Issue 2 2006
    Jessica Carmen
    Abstract Neuroadapted Sindbis Virus (NSV) is a neuronotropic virus that causes hindlimb paralysis in susceptible mice and rats. The authors and others have demonstrated that though death of infected motor neurons occurs, bystander death of uninfected neurons also occurs and both contribute to the paralysis that ensues following infection. The authors have previously shown that the treatment of NSV-infected mice with minocycline, an inhibitor that has many functions within the central nervous system (CNS), including inhibiting microglial activation, protects mice from paralysis and death. The authors, therefore, proposed that microglial activation may contribute to bystander death of motor neurons following NSV infection. Here, the authors tested the hypothesis using a conditional knock-out of activated macrophage-lineage cells, including endogenous CNS macrophage cells. Surprisingly, ablation of these cells resulted in more rapid death and similar weakness in the hind limbs of NSV-infected animals compared with that of control animals. Several key chemokines including IL-12 and monocyte chemoattractant protein-1 (MCP-1) did not become elevated in these animals, resulting in decreased infiltration of T lymphocytes into the CNS of the knock-down animals. Either because of the decreased macrophage activation directly or because of the reduced immune cell influx, viral replication persisted longer within the nervous system in knock-down mice than in wild type mice. The authors, therefore, conclude that although macrophage-lineage cells in the CNS may contribute to neurodegeneration in certain situations, they also serve a protective role, such as control of viral replication. © 2006 Wiley-Liss, Inc. [source]


    HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines

    GLIA, Issue 2 2006
    Nazira El-Hage
    Abstract Opiates exacerbate human immunodeficiency virus type 1 (HIV-1) Tat1-72 -induced release of key proinflammatory cytokines by astrocytes, which may accelerate HIV neuropathogenesis in opiate abusers. The release of monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), in particular, is potentiated by opiate,HIV Tat interactions in vitro. Although MCP-1 draws monocytes/macrophages to sites of CNS infection, and activated monocytes/microglia release factors that can damage bystander neurons, the role of MCP-1 in neuro-acquired immunodeficiency syndrome (neuroAIDS) progression in opiate abusers, or nonabusers, is uncertain. Using a chemotaxis assay, N9 microglial cell migration was found to be significantly greater in conditioned medium from mouse striatal astrocytes exposed to morphine and/or Tat1-72 than in vehicle-, ,-opioid receptor (MOR) antagonist-, or inactive, mutant Tat,31-61 -treated controls. Conditioned medium from astrocytes treated with morphine and Tat caused the greatest increase in motility. The response was attenuated using conditioned medium immunoneutralized with MCP-1 antibodies, or medium from MCP-1,/, astrocytes. In the presence of morphine (time-release, subcutaneous implant), intrastriatal Tat increased the proportion of neural cells that were astroglia and F4/80+ macrophages at 7 days post-injection. This was not seen after treatment with Tat alone, or with morphine plus inactive Tat,31-61 or naltrexone. Glia displayed increased MOR and MCP-1 immunoreactivity after morphine and/or Tat exposure. The findings indicate that MCP-1 underlies most of the response of microglia, suggesting that one way in which opiates exacerbate neuroAIDS is by increasing astroglial-derived proinflammatory chemokines at focal sites of CNS infection and promoting macrophage entry and local microglial activation. Importantly, increased glial expression of MOR can trigger an opiate-driven amplification/positive feedback of MCP-1 production and inflammation. © 2005 Wiley-Liss, Inc. [source]


    Tumor necrosis factor is required for RANTES-induced astrocyte monocyte chemoattractant protein-1 production

    GLIA, Issue 2 2003
    Yi Luo
    Abstract Astrocytes respond to stimulation with the chemokine RANTES (regulated on activation, normal T cell expressed) by production of a series of cytokines and chemokines, including tumor necrosis factor-, (TNF-,) and monocyte chemoattractant protein-1 (MCP-1). In the present study we demonstrate that RANTES induces TNF, which in turn stimulates subsequent production of MCP-1. TNF-R1 (p55) serves as the principal receptor responsible for MCP-1 synthesis. The results define an astrocyte proinflammatory cascade that amplifies synthesis of proinflammatory mediators. The implications of these findings to inflammatory diseases of the central nervous system are discussed. © 2003 Wiley-Liss, Inc. [source]


    RANTES stimulates inflammatory cascades and receptor modulation in murine astrocytes

    GLIA, Issue 1 2002
    Yi Luo
    Abstract Cultured mouse astrocytes respond to the CC chemokine RANTES by production of chemokine and cytokine transcripts. Stimulation of astrocytes with 1 nM RANTES or 3,10 nM of the structurally related chemokines (eotaxin, macrophage inflammatory protein-1, and -, [MIP-1,, MIP-1,]) induced transcripts for KC, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-, (TNF-,), MIP-1,, MIP-2, and RANTES in a chemokine and cell-specific fashion. Synthesis of chemokine (KC and MCP-1) and cytokine (TNF-,) proteins was also demonstrated. RANTES-mediated chemokine synthesis was specifically inhibited by pertussis toxin, indicating that G-protein-coupled chemokine receptors participated in astrocyte signaling. Astrocytes expressed CCR1 and CCR5 (the redundant RANTES receptors). Astrocytes derived from mice with targeted mutations of either CCR1 or CCR5 respond after RANTES stimulation, suggesting multiple chemokine receptors may separately mediate RANTES responsiveness in astrocytes. Preliminary data suggest activation of the MAP kinase pathway is also critical for RANTES-mediated signaling in astrocytes. Treatment with RANTES specifically modulated astrocyte receptors upregulating intercellular adhesion molecule 1 (ICAM-1) and downregulating CX3CR1 expression. Thus, after chemokine treatment, astrocytes release proinflammatory mediators and reprogram their surface molecules. The combined effects of RANTES may serve to amplify inflammatory responses within the central nervous system. GLIA 39:19,30, 2002. © 2002 Wiley-Liss, Inc. [source]


    CCR2 promotes hepatic fibrosis in mice,

    HEPATOLOGY, Issue 1 2009
    Ekihiro Seki
    Chemokines and chemokine receptors contribute to the migration of hepatic stellate cells (HSCs) and Kupffer cells, two key cell types in fibrogenesis. Here, we investigate the role of CCR2, the receptor for monocyte chemoattractant protein (MCP)-1, MCP-2, and MCP-3, in hepatic fibrosis. Hepatic CCR2, MCP-1, MCP-2, and MCP-3 messenger RNA expression was increased after bile duct ligation (BDL). Both Kupffer cells and HSCs, but not hepatocytes, expressed CCR2. BDL- and CCl4 -induced fibrosis was markedly reduced in CCR2,/, mice as assessed through collagen deposition, ,-smooth muscle actin expression, and hepatic hydroxyproline content. We generated CCR2 chimeric mice by the combination of clodronate, irradiation, and bone marrow (BM) transplantation allowing full reconstitution of Kupffer cells, but not HSCs, with BM cells. Chimeric mice containing wild-type BM displayed increased macrophage recruitment, whereas chimeric mice containing CCR2,/, BM showed less macrophage recruitment at 5 days after BDL. Although CCR2 expressed in the BM enhanced macrophage recruitment in early phases of injury, CCR2 expression on resident liver cells including HSCs, but not on the BM, was required for fibrogenic responses in chronic fibrosis models. In vitro experiments demonstrated that HSCs deficient in CCR2,/, or its downstream mediator p47phox,/, did not display extracellular signal-regulated kinase and AKT phosphorylation, chemotaxis, or reactive oxygen species production in response to MCP-1, MCP-2, and MCP-3. Conclusion: Our results indicate that CCR2 promotes HSC chemotaxis and the development of hepatic fibrosis. (HEPATOLOGY 2009.) [source]


    Inflammation and drug hepatotoxicity: Aggravation of injury or clean-up mission?,

    HEPATOLOGY, Issue 5 2005
    Hartmut Jaeschke
    BACKGROUND & AIMS Inflammatory mediators released by nonparenchymal inflammatory cells in the liver have been implicated in the progression of acetaminophen (APAP) hepatotoxicity. Among hepatic nonparenchymal inflammatory cells, we examined the role of the abundant natural killer (NK) cells and NK cells with T-cell receptors (NKT cells) in APAP-induced liver injury. METHODS C57BL/6 mice were administered a toxic dose of APAP intraperitoneally to cause liver injury with or without depletion of NK and NKT cells by anti-NK1.1 monoclonal antibody (MAb). Serum alanine transaminase (ALT) levels, liver histology, hepatic leukocyte accumulation, and cytokine/chemokine expression were assessed. RESULTS Compared with APAP-treated control mice, depletion of both NK and NKT cells by anti-NK1.1 significantly protected mice from APAP-induced liver injury, as evidenced by decreased serum ALT level, improved survival of mice, decreased hepatic necrosis, inhibition of messenger RNA (mRNA) expression for interferon-gamma (IFN-gamma), Fas ligand (FasL), and chemokines including KC (Keratinocyte-derived chemokine); MIP-1 alpha (macrophage inflammatory protein-1 alpha); MCP-1 (monocyte chemoattractant protein-1); IP-10 (interferon-inducible protein); Mig (monokine induced by IFN-gamma) and decreased neutrophil accumulation in the liver. Hepatic NK and NKT cells were identified as the major source of IFN-gamma by intracellular cytokine staining. APAP induced much less liver injury in Fas-deficient (lpr) and FasL-deficient (gld) mice compared with that in wild-type mice. CONCLUSIONS NK and NKT cells play a critical role in the progression of APAP-induced liver injury by secreting IFN-gamma, modulating chemokine production and accumulation of neutrophils, and up-regulating FasL expression in the liver, all of which may promote the inflammatory response of liver innate immune system, thus contributing to the severity and progression of liver injury downstream of the metabolism of APAP and depletion of reduced glutathione (GSH) in hepatocytes. [source]


    Foxf1 +/, mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury

    HEPATOLOGY, Issue 1 2003
    Vladimir V. Kalinichenko
    Previous studies have shown that haploinsufficiency of the splanchnic and septum transversum mesoderm Forkhead Box (Fox) f1 transcriptional factor caused defects in lung and gallbladder development and that Foxf1 heterozygous (+/,) mice exhibited defective lung repair in response to injury. In this study, we show that Foxf1 is expressed in hepatic stellate cells in developing and adult liver, suggesting that a subset of stellate cells originates from septum transversum mesenchyme during mouse embryonic development. Because liver regeneration requires a transient differentiation of stellate cells into myofibroblasts, which secrete type I collagen into the extracellular matrix, we examined Foxf1 +/, liver repair following carbon tetrachloride injury, a known model for stellate cell activation. We found that regenerating Foxf1 +/, liver exhibited defective stellate cell activation following CCl4 liver injury, which was associated with diminished induction of type I collagen, ,,smooth muscle actin, and Notch-2 protein and resulted in severe hepatic apoptosis despite normal cellular proliferation rates. Furthermore, regenerating Foxf1 +/, livers exhibited decreased levels of interferon-inducible protein 10 (IP-10), delayed induction of monocyte chemoattractant protein 1 (MCP-1) levels, and aberrantly elevated expression of transforming growth factor ,1. In conclusion, Foxf1 +/, mice exhibited abnormal liver repair, diminished activation of hepatic stellate cells, and increased pericentral hepatic apoptosis following CCl4 injury. [source]


    Protein array technology to investigate cytokine production by monocytes from patients with advanced alcoholic cirrhosis: An ex vivo pilot study

    HEPATOLOGY RESEARCH, Issue 7 2009
    Khalid A. Tazi
    Aim:, In patients with advanced cirrhosis, little is known about the ability of peripheral blood monocytes to spontaneously produce signaling proteins such as cytokines. The aim of this ex vivo study was to evaluate cytokine production under baseline conditions and after stimulation by lipopolysaccharide (LPS), a toll-like receptor (TLR) agonist. Methods:, Peripheral blood monocytes were isolated from patients with advanced alcoholic cirrhosis (without ongoing bacterial infections) and normal subjects. Cells were left unstimulated or were stimulated with LPS. The abundance of 24 cytokines was measured using a filter-based, arrayed sandwich enzyme-linked immunosorbent assay (ELISA) in the supernatant of cultured monocytes. Results:, Cirrhotic monocytes spontaneously produced six proteins (TNF-,, IL-6, IL-8, MCP-1, RANTES and Gro), whereas normal monocytes produced only small amounts of IL-8 and RANTES. Analyses with the online gene set analysis toolkit WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt) found enrichment for the six proteins in the human gene ontology subcategory (http://www.geneontology.org), Kyoto Encyclopedia of Genes and Genome pathways (http://www.genome.ad.jp/kegg/) and BioCarta pathways (http://www.biocarta.com/genes/index.asp) consistent with a proinflammatory phenotype of cirrhotic monocytes resulting from activated TLR signaling. Interestingly, LPS-elicited TLR engagement further increased the production of the six proteins and did not induce the secretion of any others, in particular the anti-inflammatory cytokine IL-10. LPS-stimulated normal monocytes produced TNF-,, IL-6, IL-8, MCP-1, RANTES, Gro and IL-10. Conclusion:, In patients with advanced cirrhosis, peripheral blood monocytes spontaneously produce proinflammatory cytokines, presumably in response to unrestricted TLR signaling. [source]


    Nonconcordance between subclinical atherosclerosis and the calculated Framingham risk score in HIV-infected patients: relationships with serum markers of oxidation and inflammation

    HIV MEDICINE, Issue 4 2010
    S Parra
    Objectives HIV-infected patients show an increased cardiovascular disease (CVD) risk resulting, essentially, from metabolic disturbances related to chronic infection and antiretroviral treatments. The aims of this study were: (1) to evaluate the agreement between the CVD risk estimated using the Framingham risk score (FRS) and the observed presence of subclinical atherosclerosis in HIV-infected patients; (2) to investigate the relationships between CVD and plasma biomarkers of oxidation and inflammation. Methods Atherosclerosis was evaluated in 187 HIV-infected patients by measuring the carotid intima-media thickness (CIMT). CVD risk was estimated using the FRS. We also measured the circulating levels of interleukin-6, monocyte chemoattractant protein-1 (MCP-1) and oxidized low-density lipoprotein (LDL), and paraoxonase-1 activity and concentration. Results There was a weak, albeit statistically significant, agreement between FRS and CIMT (,=0.229, P<0.001). A high proportion of patients with an estimated low risk had subclinical atherosclerosis (n=66; 56.4%). In a multivariate analysis, the presence of subclinical atherosclerosis in this subgroup of patients was associated with age [odds ratio (OR) 1.285; 95% confidence interval (CI) 1.084,1.524; P=0.004], body mass index (OR 0.799; 95% CI 0.642,0.994; P=0.044), MCP-1 (OR 1.027; 95% CI 1.004,1.050; P=0.020) and oxidized LDL (OR 1.026; 95% CI 1.001,1.051; P=0.041). Conclusion FRS underestimated the presence of subclinical atherosclerosis in HIV-infected patients. The increased CVD risk was related, in part, to the chronic oxidative stress and inflammatory status associated with this patient population. [source]


    The p38 mitogen-activated protein kinase regulates interleukin-1,-induced IL-8 expression via an effect on the IL-8 promoter in intestinal epithelial cells

    IMMUNOLOGY, Issue 4 2003
    Kuljit Parhar
    Summary Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-,B, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-,B in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1, activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-,B signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of I,B,, the binding partner of NF-,B. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-,B luciferase construct, using both SB 203580 and dominant,negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription,polymerase chain reaction (RT,PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8,luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant,negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-,B. [source]


    Epstein-Barr virus infection in immortalized nasopharyngeal epithelial cells: Regulation of infection and phenotypic characterization

    INTERNATIONAL JOURNAL OF CANCER, Issue 7 2010
    Chi Man Tsang
    Abstract Epstein-Barr virus (EBV) infection has been postulated to be an early event involved in the pathogenesis of nasopharyngeal carcinomas (NPC). The lack of representative premalignant nasopharyngeal epithelial cell system for EBV infection has hampered research investigation into the regulation and involvement of EBV infection in NPC pathogenesis. We have compared the efficiency of EBV infection in nasopharyngeal epithelial cells with different biological properties including immortalized, primary and cancerous nasopharyngeal epithelial cells. EBV infection could be achieved in all the nasopharyngeal epithelial cells examined with variable infection rate. TGF-, effectively enhanced EBV infection into nasopharyngeal epithelial cells both in the immortalized and primary nasopharyngeal epithelial cells. Stable infection of EBV was achieved in a telomerase-immortalized nasopharyngeal epithelial cell line, NP460hTert. The expression pattern of EBV-encoded genes and biological properties of this EBV infected cell line on long-term propagation were monitored. The EBV-infected nasopharyngeal epithelial cells acquired anchorage-independent growth and exhibited invasive growth properties on prolonged propagation. A distinguished feature of this EBV-infected nasopharyngeal epithelial cell model was its enhanced ability to survive under growth factor and nutrient starvation. This was evidenced by the suppressed activation of apoptotic markers and sustained activation of pAkt of EBV-infected cells compared to control cells under nutrient starvation. Examination of cytokine profiles of EBV-infected NP460hTert cells to nutrient and growth factor deprivation revealed upregulation of expression of MCP-1 and GRO-,. The establishment of a stable EBV infection model of premalignant nasopharyngeal epithelial cells will facilitate research investigation into the pathogenic role of EBV in NPC development. [source]


    Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 5 2010
    Maylis Dagouassat
    Abstract The aim of our study was to investigate whether myofibroblasts and the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 may play a role in hepatocellular carcinoma progression. We observed that hepatic myofibroblast LI90 cells express MCP-1/CCL2 mRNA and secrete this chemokine. Moreover, myofibroblast LI90 cell-conditioned medium (LI90-CM) induces human hepatoma Huh7 cell migration and invasion. These effects are strongly reduced when a MCP-1/CCL2-depleted LI90-CM was used. We showed that MCP-1/CCL2 induces Huh7 cell migration and invasion through its G-protein,coupled receptor CCR2 and, to a lesser extent, through CCR1 only at high MCP-1/CCL2 concentrations. MCP-1/CCL2's chemotactic activities rely on tyrosine phosphorylation of focal adhesion components and depend on matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, we observed that Huh7 cell migration and invasion induced by the chemokine are strongly inhibited by heparin, by ,-D-xyloside treatment of cells and by anti-syndecan-1 and -4 antibodies. Finally, we developed a 3-dimensional coculture model of myofibroblast LI90 and Huh7 cells and demonstrated that MCP-1/CCL2 and its membrane partners, CCR1 and CCR2, may be involved in the formation of mixed hepatoma-myofibroblast spheroids. In conclusion, our data show that human liver myofibroblasts act on hepatoma cells in a paracrine manner to increase their invasiveness and suggest that myofibroblast-derived MCP-1/CCL2 could be involved in the pathogenesis of hepatocellular carcinoma. [source]


    Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2009
    Hiroshi Fujimoto
    Abstract There is growing evidence that tumor-associated macrophages (TAMs) promote tumor growth and dissemination. Many individual reports have focused on the protumor function of molecules linked to the recruitment of macrophages, but little is known about which factor has the strongest impact on recruitment of macrophages in breast cancer. To elucidate this question, we performed RT-PCR using species-specific primers and evaluated tumoral and stromal mRNA expression of macrophage chemoattractants separately in human breast tumor xenografts. The correlation between the tumoral or stromal chemoattractant mRNA expression including monocyte chemoattractant protein-1 (MCP-1) (CCL2), MIP-1, (CCL3), RANTES (CCL5), colony-stimulating factor 1, tumor necrosis factor ,, platelet-derived growth factor (PDGF)-BB and macrophage infiltration were compared. There was significant positive correlation between stromal MCP-1 expression and macrophage number (r = 0.63), and negative correlation between tumoral RANTES expression and macrophage number (r = ,0.75). However, no significant correlation was found for the other tumoral and stromal factors. The interaction between the tumor cells and macrophages was also investigated. Tumor cell,macrophage interactions augmented macrophage-derived MCP-1 mRNA expression and macrophage chemotactic activity in vitro. Treatment of immunodeficient mice bearing human breast cancer cells with a neutralizing antibody to MCP-1 resulted in significant decrease of macrophage infiltration, angiogenetic activity and tumor growth. Furthermore, immunohistochemical analysis of human breast cancer tissue showed stromal MCP-1 had a significant correlation with relapse free survival (p = 0.029), but tumoral MCP-1 did not (p = 0.105). These findings indicate that stromal MCP-1 produced as a result of tumor,stromal interactions may be important for the progression of human breast cancer and macrophages may play an important role in this tumor,stroma interaction. © 2009 UICC. [source]