MCL Cells (mcl + cell)

Distribution by Scientific Domains


Selected Abstracts


Over-expression of CCL3,,MIP-1, in a blastoid mantle cell lymphoma with hypercalcemia

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 5 2010
Norimichi Hattori
Abstract We analyzed a case with the blastoid variant of mantle cell lymphoma (MCL-BV), a rare subtype of B-cell lymphoma, presenting with marked hypercalcemia at diagnosis. Enzyme-linked immunosorbent assay (ELISA) showed elevated serum levels of interleukin-6 (IL-6), tumor necrosis factor-, (TNF-,), macrophage inflammatory protein-1, (MIP-1,), and type I collagen telopeptide, but not parathyroid hormone, calcitriol or parathyroid hormone-related peptide at diagnosis, suggesting local osteoclastic hypercalcemia in this case. By reverse transcription polymerase chain reaction (RT-PCR) analysis, we found predominant expression of mRNA for MIP-1, in addition to those for receptor-activator of nuclear-factor kappa B ligand (RANKL), TNF-,, and IL-6 in lymphoma cells obtained from the patient. Furthermore, recombinant MIP-1, significantly stimulated 3H-thymidine uptake by isolated MCL cells in vitro. Treatment with intravenous fluids, bisphosphonate, and methylprednisolone followed by combination chemotherapy promptly corrects the hypercalcemia and successfully induced complete remission, which was accompanied by a decrease of these cytokines in the serum, including MIP-1,. In the present case, MIP-1,, an osteoclast-activating factor produced by mantle lymphoma cells, may contribute to the development of hypercalcemia. It likely acts through RANKL expression in tumor cells and/or stroma cells, as indicated in multiple myeloma (MM) and adult T-cell leukemia/lymphoma (ATLL). Furthermore, MIP-1, is also involved in the development of an aggressive phenotype on MCL by stimulating proliferation of these lymphoma cells. In summary, the present study demonstrated that MIP-1, is an important factor in the development of both hypercalcemia and an aggressive phenotype in some types of B-cell lymphoma. [source]


GDF-5/7 and bFGF activate integrin ,2-mediated cellular migration in rabbit ligament fibroblasts

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2010
Hirokazu Date
Abstract Cellular activities responding to growth factors are important in ligament healing. The anterior cruciate ligament (ACL) has poor healing potential compared to the medial collateral ligament (MCL). To assess the differences, we investigated the proliferation, migration, adhesion, and matrix synthesis responding to growth factors in rabbit ACL and MCL fibroblasts. ACL cell proliferation to basic fibroblast growth factor (bFGF), bone morphogenetic protein-2, growth and differentiation factor (GDF)-5, and GDF-7 treatment was similar to that of MCL cells. GDF-5 enhanced Col1a1 expression in ACL and MCL fibroblasts up to 4.7- and 17-fold levels of control, respectively. MCL fibroblasts showed stronger migration activities in response to bFGF and GDF-5 than ACL cells. GDF-5/7 and bFGF also changed the stress fiber formation and cellular adhesion by modulating the distribution of integrin ,2. Functional blocking analyses using anti-integrin ,2 antibodies revealed that cellular migration responding to growth factors depended on the integrin ,2-mediated adhesion on type I collagen. The expression of integrin ,2 was also increased by growth factors in both cells. Our results demonstrate that GDF-5/7 and bFGF stimulate cellular migration by modulating integrin ,2 expression and integrin ,2-dependent adhesion, especially in MCL fibroblasts. These findings suggest that the different healing potential between ACL and MCL may be caused by different cellular behavior in the integrin ,2-mediated cellular migration in response to growth factors. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:225,231, 2010 [source]


Synergistic antitumor effects of lenalidomide and rituximab on mantle cell lymphoma in vitro and in vivo,

AMERICAN JOURNAL OF HEMATOLOGY, Issue 9 2009
Liang Zhang
Rituximab (RTX), a chimeric anti-CD20 antibody, is associated with direct induction of apoptosis and antibody-dependent cell-mediated cytotoxicity (ADCC) with clinical efficacy in mantle cell lymphoma (MCL). Lenalidomide (LEN), a novel immunomodulatory agent, sensitizes tumor cells and enhances ADCC. Our study attempted to elucidate the mechanism of LEN-enhanced RTX-mediated cytotoxicity of MCL cells. We found that LEN and RTX induced growth inhibition of both cultured and fresh primary MCL cells. LEN enhanced RTX-induced apoptosis via upregulating phosphorylation of c-Jun N-terminal protein kinases (JNK), Bcl-2, Bad; increasing release of cytochrome-c; enhancing activation of caspase-3, -8, -9 and cleavage of PARP. Meanwhile, LEN activated NK cells and increased CD16 expression on CD56lowCD16+ NK cells. Whole PBMCs but not NK cell-depleted PBMCs treated with LEN augmented 30% of RTX-dependent cytotoxicity. Daily treatment with LEN increased NK cells by 10-folds in SCID mice, and combination of LEN and RTX decreased tumor burden and prolonged survival of MCL-bearing SCID mice. Taken together, our study demonstrates that LEN plus RTX provides a synergistically therapeutic effect on MCL cells by enhancing apoptosis and RTX-dependent NK cell-mediated cytotoxicity and may be an optimal combination in the clinical trial of relapsed or refractory MCL. Am. J. Hematol. 2009. © 2009 Wiley-Liss, Inc. [source]


JNK is constitutively active in mantle cell lymphoma: cell cycle deregulation and polyploidy by JNK inhibitor SP600125,

THE JOURNAL OF PATHOLOGY, Issue 1 2009
Miao Wang
Abstract Mantle cell lymphoma (MCL) is characterized by genetic instability and a poor prognosis. Many blastoid variants are (hypo)tetraploid and have an even worse prognosis. We investigated the role of signalling by mitogen-activated protein kinases (MAPKs) in MCL. As compared to normal tonsil B cells, MCL cells showed higher activation of the JNK MAPK in both an MAPK array and a sandwich ELISA assay. Immunohistochemistry showed overexpression of phospho (p)-JNK (Thr183/Tyr185) in 30 of 37 MCL cases. Inhibition of p-JNK with SP600125 resulted in growth arrest in all four MCL cell lines (Jeko-1, HBL-2, UPN-1, Granta-519), which could be partly reversed by the addition of CD40L and IL-4. Furthermore, SP600125 led to G2/M phase arrest on day 1 and a striking increase in endoreduplication on day 2 and day 3, which was confirmed by karyotype analysis. G2/M arrest was associated with down-regulation of EGR1 and p21 protein expression. SP600125-induced polyploidy could be blocked by the BCL-2 inhibitor YC137. These data suggest that constitutive JNK activity is necessary to promote proliferation and maintain diploidy in MCL. JNK inhibition leads to cell cycle deregulation and endoreduplication, mimicking the tetraploid state seen in a subset of MCL cases. Thus, our data also provide an experimental model to study polyploid MCL cells. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]