MC3T3-E1 Osteoblastic Cells (mc3t3-e1 + osteoblastic_cell)

Distribution by Scientific Domains


Selected Abstracts


A Role for G Protein-Coupled Lysophospholipid Receptors in Sphingolipid-Induced Ca2+ Signaling in MC3T3-E1 Osteoblastic Cells

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2001
Jeremy M. Lyons
Abstract Sphingolipids have been proposed to modulate cell function by acting as intracellular second messengers and through binding to plasma membrane receptors. Exposure of MC3T3-E1 osteoblastic cells to sphingosine (SPH), sphingosine-1-phosphate (SPP), or sphingosylphosphorylcholine (SPC) led to the release of Ca2+ from the endoplasmic reticulum (ER) and acute elevations in cytosolic-free Ca2+ ([Ca2+]i). Desensitization studies suggest that SPP and SPC bind plasma membrane endothelial differentiation gene (Edg) receptors for lysophosphatidic acid (LPA). Consistent with the coupling of Edg receptors to G proteins, SPP- and SPC-induced Ca2+ signaling was inhibited by pretreatment of the cells with pertussis toxin (PTx). Of the Edg receptors known to bind SPH derivatives in other cell types, MC3T3-E1 cells were found to express transcripts encoding Edg -1 and Edg -5 but not Edg -3, Edg -6, or Edg -8. In contrast to SPP and SPC, the ability of SPH to elicit [Ca2+]i elevations was affected neither by prior exposure of cells to LPA nor by PTx treatment. However, LPA-induced Ca2+ signaling was blocked in MC3T3-E1 cells previously exposed to SPH. Elevations in [Ca2+]i were not evoked by SPP or SPC in cells treated with 2-aminoethoxydiphenylborate (2-APB), an inhibitor of inositol 1,4,5-trisphosphate (IP3)-gated Ca2+ channels in the ER. No effect of 2-APB was observed on SPH- or LPA-induced [Ca2+]i elevations. The data support a model in which SPP and SPC bind Edg -1 and/or Edg -5 receptors in osteoblasts leading to the release of Ca2+ from the ER through IP3 -gated channels. [source]


A Dominant Negative Cadherin Inhibits Osteoblast Differentiation,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2000
Su-Li Cheng
Abstract We have previously indicated that human osteoblasts express a repertoire of cadherins and that perturbation of cadherin-mediated cell-cell interaction reduces bone morphogenetic protein 2 (BMP-2) stimulation of alkaline phosphatase activity. To test whether inhibition of cadherin function interferes with osteoblast function, we expressed a truncated N-cadherin mutant (NCad,C) with dominant negative action in MC3T3-E1 osteoblastic cells. In stably transfected clones, calcium-dependent cell-cell adhesion was decreased by 50%. Analysis of matrix protein expression during a 4-week culture period revealed that bone sialoprotein, osteocalcin, and type I collagen were substantially inhibited with time in culture, whereas osteopontin transiently increased. Basal alkaline phosphatase activity declined in cells expressing NCad,C, relative to control cells, after 3 weeks in culture, and their cell proliferation rate was reduced moderately (17%). Finally,45Ca uptake, an index of matrix mineralization, was decreased by 35% in NCad,C-expressing cells compared with control cultures after 4 weeks in medium containing ascorbic acid and ,-glycerophosphate. Similarly, BMP-2 stimulation of alkaline phosphatase activity and bone sialoprotein and osteopontin expression also were curtailed in NCad,C cells. Therefore, expression of dominant negative cadherin results in decreased cell-cell adhesion associated with altered bone matrix protein expression and decreased matrix mineralization. Cadherin-mediated cell-cell adhesion is involved in regulating the function of bone-forming cells. [source]


FIAT represses bone matrix mineralization by interacting with ATF4 through its second leucine zipper

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2008
Vionnie W.C. Yu
Abstract We have characterized FIAT, a 66 kDa leucine zipper (LZ) protein that dimerizes with activating transcription factor 4 (ATF4) to form inactive dimers that cannot bind DNA. Computer analysis identifies three putative LZ motifs within the FIAT amino acid sequence. We have used deletion- and/or site-specific mutagenesis to individually inactivate these motifs in order to identify the functional LZ that mediates the FIAT,ATF4 interaction. Amino acids 194,222 that encode the FIAT LZ2 were deleted (mutant FIAT ZIP2 DEL). We inactivated each zipper individually by replacing two or three leucine residues within each zipper by alanine residues. The engineered mutations were L142A/L149A (mutant M1, first zipper), L208A/L215A/L222A (mutant M2, second zipper), and L441A/L448A (mutant M3, third zipper). MC3T3-E1 osteoblastic cells with an integrated 1.3 kb mouse osteocalcin gene promoter fragment driving expression of luciferase were transfected with expression vectors for ATF4 and the various FIAT deletion- or site-specific mutants. Inhibition of ATF4-mediated transcription was compared between wild-type (WT) and LZ FIAT mutants. The deletion mutant FIAT ZIP2 DEL and the sequence-specific M2 mutant did not interact with ATF4 and were unable to inhibit ATF4-mediated transcription. The M1 or M3 mutations did not affect the ability of FIAT to contact ATF4 or to inhibit its transcriptional activity. Stable expression of WT FIAT in osteoblastic cells inhibited mineralization, but not expression of the FIAT ZIP2 DEL and M2 mutants. This structure,function analysis reveals that FIAT interacts with ATF4 and modulates its activity through its second leucine zipper motif. J. Cell. Biochem. 105: 859,865, 2008. © 2008 Wiley-Liss, Inc. [source]


Oversulfated chondroitin sulfate-E binds to BMP-4 and enhances osteoblast differentiation

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2008
Tatsuya Miyazaki
Small leucine-rich proteoglycans, such as biglycan, and their side chain sulfated glycosaminoglycans (GAGs), have been suggested to be involved in bone formation and mineralization processes. The present study was designed to investigate whether chondroitin sulfate (CS), one of the GAG, and its oversulfated structures coupled with bone morphogenetic protein-4 (BMP-4) alter the differentiation and subsequent mineralization of MC3T3-E1 osteoblastic cells. CS-E, one of the oversulfated CS structure, enhanced cell growth, alkaline phosphatase (ALP) activity, collagen deposition, and mineralization whereas heparin enhanced only ALP activity and mineralization. As well as CS-E, CS-H, and CPS also enhanced the mineralization of the cells. CS-E enhanced the mineralization of the cells by interacting with protein in the conditioned medium. CS-E induced mineralization was significantly inhibited by an antibody against BMP-4. The addition of exogenous BMP-4 further increased the capacity of CS-E to enhance mineralization. Fluorescence correlation spectroscopy method using fluoresceinamine-labeled GAG revealed that the oversulfated GAGs have a high affinity for BMP-4. The disaccharide analysis of the cells indicated that MC3T3-E1 cells are capable of producing oversulfated structures of CS by themselves. The lack of CS from the cells after chondroitinase treatment resulted in the inhibition of mineralization. These results in the present study indicate that oversulfated CS, which possesses 4,6-disulfates in N -acetyl-galactosamine, binds to BMP-4 and promotes osteoblast differentiation and subsequent mineralization. J. Cell. Physiol. 217: 769,777, 2008. © 2008 Wiley-Liss, Inc. [source]


Constitutive expression of thrombospondin 1 in MC3T3-E1 osteoblastic cells inhibits mineralization

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
Akemichi Ueno
Thrombospondin 1 (TSP1) is a multifunctional extracellular glycoprotein present mainly in the fetal and adult skeleton. Although an inhibitory effect of TSP1 against pathological mineralization in cultured vascular pericytes has been shown, its involvement in physiological mineralization by osteoblasts is still unknown. To determine the role of TSP1 in biomineralization, mouse osteoblastic MC3T3-E1 cells were cultured in the presence of antisense phosphorothioate oligodeoxynucleotides complementary to the TSP1 sequence. The 18- and 24-mer antisense oligonucleotides caused concentration-dependent increases in the number of mineralized nodules, acid-soluble calcium deposition in the cell/matrix layer, and alkaline phosphatase activity within 9 days, without affecting cell proliferation. The corresponding sense or scrambled oligonucleotides did not affect these parameters. In the antisense oligonucleotide-treated MC3T3-E1 cells, thickened extracellular matrix, well-developed cell processes, increased intracellular organelles, and collagen fibril bundles were observed. On the other hand, the addition of TSP1 to the culture decreased the production of a mineralized matrix by MC3T3-E1 cells. Furthermore, MC3T3-E1 clones overexpressing mouse TSP1 were established and assayed for TSP1 protein and their capacity to mineralize. TSP1 dose-dependently inhibited mineralization by these cells both in vitro and in vivo. These results indicate that TSP1 functions as an inhibitory regulator of bone mineralization and matrix production by osteoblasts to sustain bone homeostasis. J. Cell. Physiol. 209: 322,332, 2006. © 2006 Wiley-Liss, Inc. [source]