MC1R Gene (mc1r + gene)

Distribution by Scientific Domains


Selected Abstracts


Loss-of-function variants of the human melanocortin-1 receptor gene in melanoma cells define structural determinants of receptor function

FEBS JOURNAL, Issue 24 2002
Jesús Sánchez Más
The ,-melanocyte-stimulating hormone (,MSH) receptor (MC1R) is a major determinant of mammalian skin and hair pigmentation. Binding of ,MSH to MC1R in human melanocytes stimulates cell proliferation and synthesis of photoprotective eumelanin pigments. Certain MC1R alleles have been associated with increased risk of melanoma. This can be theoretically considered on two grounds. First, gain-of-function mutations may stimulate proliferation, thus promoting dysplastic lesions. Second, and opposite, loss-of-function mutations may decrease eumelanin contents, and impair protection against the carcinogenic effects of UV light, thus predisposing to skin cancers. To test these possibilities, we sequenced the MC1R gene from seven human melanoma cell (HMC) lines and three giant congenital nevus cell (GCNC) cultures. Four HMC lines and two GCNC cultures contained MC1R allelic variants. These were the known loss-of-function Arg142His and Arg151Cys alleles and a new variant, Leu93Arg. Moreover, impaired response to a superpotent ,MSH analog was demonstrated for the cell line carrying the Leu93Arg allele and for a HMC line homozygous for wild-type MC1R. Functional analysis in heterologous cells stably or transiently expressing this variant demonstrated that Leu93Arg is a loss-of-function mutation abolishing agonist binding. These results, together with site-directed mutagenesis of the vicinal Glu94, demonstrate that the MC1R second transmembrane fragment is critical for agonist binding and maintenance of a resting conformation, whereas the second intracellular loop is essential for coupling to the cAMP system. Therefore, loss-of-function, but not activating MC1R mutations are common in HMC. Their study provides important clues to understand MC1R structure-function relationships. [source]


Variation of the melanocortin 1 receptor gene in the macaques

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 8 2008
Kazuhiro Nakayama
Abstract Melanocortin 1 receptor (MC1R), a G-coupled seven-transmembrane receptor protein, plays a key role in the regulation of melanin synthesis in mammals. Sequence variation of the MC1R gene (MC1R) has been associated with pigmentation phenotypes in humans and in several animal species. The macaques (genus Macaca) are known to show a marked inter-specific variation in coat color although the causative genetic variation remains unclear. We investigated nucleotide sequences of the MC1R in 67 individuals of 18 macaque species with different coat color phenotypes including black and agouti. Twenty-eight amino acid replacements were identified in the macaques, but none of these amino acid replacements could explain the black coat color of Macaca silenus and the Sulawesi macaque species. Our molecular evolutionary analysis has revealed that nonsynonymous substitution/synonymous substitution (dN/dS) ratio of the MC1R has not been uniform in the macaque groups and, moreover, their coat color and dN/dS ratio were not related. These results suggest that the MC1R is unlikely to be responsible for the coat color variation of the macaques and functions of MC1R other than pigmentation might be associated with the different selective pressures on the MC1R in macaques. Am. J. Primatol. 70:778,785, 2008. © 2008 Wiley-Liss, Inc. [source]


Mutations in the melanocortin 1 receptor (MC1R) gene are associated with coat colours in the domestic rabbit (Oryctolagus cuniculus)

ANIMAL GENETICS, Issue 5 2006
L. Fontanesi
Summary We sequenced almost the complete coding region of the MC1R gene in several domestic rabbits (Oryctolagus cuniculus) and identified four alleles: two wild-type alleles differing by two synonymous single nucleotide polymorphisms (c.333A>G;c.555T>C), one allele with a 30-nucleotide in-frame deletion (c.304_333del30) and one allele with a 6-nucleotide in-frame deletion (c.280_285del6). A polymerase chain reaction-based protocol was used to distinguish the wild-type alleles from the other two alleles in 263 rabbits belonging to 37 breeds or strains. All red/fawn/yellow rabbits were homozygous for the c.304_333del30 allele. This allele represents the recessive e allele at the extension locus identified through pioneering genetic studies in this species. All Californian, Checkered, Giant White and New Zealand White rabbits were homozygous for allele c.280_285del6, which was also observed in the heterozygous condition in a few other breeds. Black coat colour is part of the standard colour in Californian and Checkered breeds, in contrast to the two albino breeds, Giant White and New Zealand White. Following the nomenclature established for the rabbit extension locus, the c.280_285del6 allele, which is dominant over c.304_333del30, may be allele ED or allele ES. [source]


Molecular variation in pigmentation genes contributing to coat colour in native Korean Hanwoo cattle

ANIMAL GENETICS, Issue 5 2008
T. R. Mohanty
Summary Pigmentation genes such as TYR (tyrosinase), TYRP1 (tyrosinase-related protein 1), DCT (previously TYRP2, or tyrosinase-related protein 2), ASIP (agouti) and MC1R (melanocortin receptor 1) play a major role in cattle coat colour. To understand the genotypic profile underlying coat colour in native Korean Hanwoo cattle and Angus black cattle, portions of the above-mentioned genes were amplified. Sequence analysis revealed variation in the TYRP1 (exon 5) and MC1R genes. Restriction enzyme analysis of these two genes could distinguish between different colours of Hanwoo cattle. Quantitative estimates of melanin and eumelanin in hair from three different-coloured Hanwoo phenotypes and Angus black showed significant differences at the breed and phenotypic levels. Finally, sequence variants in MC1R were associated with total melanin and eumelanin in breeds as well as in Hanwoo phenotypes. [source]