Matter Yield (matter + yield)

Distribution by Scientific Domains

Kinds of Matter Yield

  • dry matter yield


  • Selected Abstracts


    Effect of Nitrogen Rate and Stubble Height on Dry Matter Yield, Crude Protein Content and Crude Protein Yield of a Sorghum,Sudangrass Hybrid[Sorghum bicolor (L.) Moench × Sorghum sudanense (Piper) Stapf.] in the Three-Cutting System

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2003
    S. Iptas
    Abstract In this study, the effects of nitrogen (N) rate (60, 120, 180 and 240 kg N ha,1 applied in three equal dressings at seeding and after the first and second cuttings) and stubble height (7, 14 and 21 cm) on the dry matter (DM) yield, crude protein (CP) content, and CP yield of a sorghum,sudangrass hybrid [Sorghum bicolor (L.) Moench × Sorghum sudanense (Piper) Stapf., cv. Pioneer 988] in the three-cut system was investigated. The N rate had no significant effect in the first and third cuttings, but in the second cutting DM yields increased significantly with increase in N rate. The highest yield of 9.1 t ha,1 was obtained with 80 kg N ha,1 for the average of 2 years at the second cutting, but no significant difference was found among the 40, 60 and 80 kg N ha,1 rates. CP content and yield were not significantly affected by N rate at the first and third cuttings, but CP content and yield were significantly affected by application of N at the second cutting. Stubble height had a significant effect on CP content at the third cutting. However, it had no significant effect on CP content at the first and second cuttings. Stubble height had a significant effect on the CP yield at the first cutting, but no significant effect on CP yield at the second and third cuttings. [source]


    Effect of Drought Stress on Yield and Quality of Maize/Sunflower and Maize/Sorghum Intercrops for Biogas Production

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2010
    S. SchittenhelmArticle first published online: 16 FEB 2010
    Abstract Intercropping represents an alternative to maize (Zea mays L.) monoculture to provide substrate for agricultural biogas production. Maize was intercropped with either sunflower (Helianthus annuus L.) or forage sorghum [Sorghum bicolor (L.) Moench] to determine the effect of seasonal water supply on yield and quality of the above-ground biomass as a fermentation substrate. The two intercrop partners were grown in alternating double rows at plant available soil water levels of 60,80 %, 40,50 % and 15,30 % under a foil tunnel during the years 2006 and 2007 at Braunschweig, Germany. Although the intercrop dry matter yields in each year increased with increasing soil moisture, the partner crops responded quite differently. While maize produced significantly greater biomass under high rather than low water supply in each year, forage sorghum exhibited a significant yield response only in 2006, and sunflower in none of the 2 years. Despite greatly different soil moisture contents, the contribution of sorghum to the intercrop dry matter yield was similar, averaging 43 % in 2006 and 40 % in 2007. Under conditions of moderate and no drought stress, sunflower had a dry matter yield proportion of roughly one-third in both years. In the severe drought treatment, however, sunflower contributed 37 % in 2006 and 54 % in 2007 to the total intercrop dry matter yield. The comparatively good performance of sunflower under conditions of low water supply is attributable to a fast early growth, which allows this crop to exploit the residual winter soil moisture. While the calculated methane-producing potential of the maize/sorghum intercrop was not affected by the level of water supply, the maize/sunflower intercrop in 2006 had a higher theoretically attainable specific methane yield under low and medium than under high water supply. Nevertheless, the effect of water regime on substrate composition within the intercrops was small in comparison with the large differences between the intercrops. [source]


    Effects of Salinity and Mixed Ammonium and Nitrate Nutrition on the Growth and Nitrogen Utilization of Barley

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2001
    A. Ali
    The absorption and utilization of nitrogen (N) by plants are affected by salinity and the form of N in the root medium. A hydroponic study was conducted under controlled conditions to investigate growth and N uptake by barley (Hordeum vulgare L.) supplied with five different NH4+ -N/NO3, -N ratios at electrical conductivity of 0 and 8 dS m,1. The five NH4+ -N/NO3 -N ratios were 0/100, 25/75, 50/50, 75/25 and 100/0, each giving a total N supply of 100 mg N l,1 in the root medium. A mixed N supply of NH4+ and NO3, resulted in greater accumulation of N in plants than either NO3, or NH4+ as the sole N source. Plants produced a significantly higher dry matter yield when grown with mixed N nutrition than with NH4+ or NO3, alone. Total dry matter production and root and shoot N contents decreased with increasing salinity in the root medium. The interaction between salinity and N nutrition was found to be significant for all the variables. A significant positive correlation (r=0.97) was found between nitrogen level in the plant shoot and its dry matter yield. Wachstum und Stickstoffausnutzung bei Gerste in Abhängigkeit von Versalzung und Michungen von Ammonium und Nitrat Aufnahme und Nutzung von N durch Pflanzen wird von der Versalzung und N-Form im Wurzelbereich bestimmt. Es wurde in Hydrokultur unter kontrollierten Bedingungen Wachstum und N-Aufnahme durch Gerste (Hordeum vulgare L.) bei Anwendung von fünf unterschiedlichen NH4+ -N/NO3, -N Verhältnissen bei einer elektrischen Konduktivität von 0 und 8 dS m,1 untersucht. Die Gesamtmenge von 100 mg N l,1 im Wurzelmedium wies NH4+ -N/NO3, -N Verhältnisse von 0/100, 25/75, 50/50, 75/25 und 100/0 auf. Mischungen von NH4+ und NO3, führten zu einer größeren Aufnahme durch die Pflanzen als bei alleiniger Anwendung von NO3, oder NH4+. Die Pflanzen produzierten signifikant mehr Gesamttrockenmasse mit Mischungen der beiden N-Formen im Vergleich zu alleiniger Anwendung von NH4+ oder NO3,. Die Gesamttrockenmasse sowie die N-Gehalte von Wurzel und Sproß nahmen mit steigender Versalzung ab. Versalzungs- und N-Versorgungs-Interaktion war signifikant in allen Versuchsbedingungen. Eine signifikante positive Korrelation (r=0,97) wurde zwischen Stickstoffkonzentration und der Trockenmasseproduktion der Pflanze gefunden. [source]


    Genotypic variation of potato for phosphorus efficiency and quantification of phosphorus uptake with respect to root characteristics

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2009
    Tesfaye Balemi
    Abstract Potato (Solanum tuberosum L.), an important food crop, generally requires a high amount of phosphate fertilizer for optimum growth and yield. One option to reduce the need of fertilizer is the use of P-efficient genotypes. Two efficient and two inefficient genotypes were investigated for P-efficiency mechanisms. The contribution of root traits to P uptake was quantified using a mechanistic simulation model. For all genotypes, high P supply increased the relative growth rate of shoot, shoot P concentration, and P-uptake rate of roots but decreased root-to-shoot ratio, root-hair length, and P-utilization efficiency. Genotypes CGN 17903 and CIP 384321.3 were clearly superior to genotypes CGN 22367 and CGN 18233 in terms of shoot,dry matter yield and relative shoot-growth rate at low P supply, and therefore can be considered as P-efficient. Phosphorus efficiency of genotype CGN 17903 was related to higher P-utilization efficiency and that of CIP 384321.3 to both higher P-uptake efficiency in terms of root-to-shoot ratio and intermediate P-utilization efficiency. Phosphorus-efficient genotypes exhibited longer root hairs compared to inefficient genotypes at both P levels. However, this did not significantly affect the uptake rate and the extension of the depletion zone around roots. The P inefficiency of CGN 18233 was related to low P-utilization efficiency and that of CGN 22367 to a combination of low P uptake and intermediate P-utilization efficiency. Simulation of P uptake revealed that no other P-mobilization mechanism was involved since predicted uptake approximated observed uptake indicating that the processes involved in P transport and morphological root characterstics affecting P uptake are well described. [source]


    Evaluation of residual values of different fertilisers at various rates used in phosphorus recapitalisation of an acid tropical soil

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 14 2006
    Esther W Gikonyo
    Abstract The success of ,phosphorus (P) recapitalisation' depends on the changes in residual value (RV) over time. RVs of triple superphosphate (TSP), Gafsa phosphate rock (GPR) and Christmas Island phosphate rock (CIPR) were determined with and without manure bimonthly for 14 months. RV was calculated as the amount of previously applied fertiliser required to produce yield X divided by the amount of freshly applied TSP required to produce the same yield. Dry matter yield (DMY) response curves were curvilinear, with maximum DMY (11 t ha,1) occurring between 150 and 200 kg P ha,1 at 6 months and declining with time to 2,4 t ha,1 (14 months). Manure/fertiliser combinations increased DMY for CIPR but depressed DMY for TSP and GPR in all harvests except the first one. This can be attributed to nutrient imbalance caused by high P levels. RVs declined with time for fertilisers alone from 100,140% to 10,20% (14 months), while for fertiliser/manure combinations they declined from 110,180% to 10,20% (14 months). Increasing P rates from 100 to 300 kg P ha,1 resulted in the depression of initial RVs (100,140%) to 20,60% and later to 10,20% (14 months). Therefore P recapitalisation was not beneficial and hence annual P application would be recommended at 100,150 kg P ha,1. The phosphate rocks could effectively substitute for TSP. Copyright © 2006 Society of Chemical Industry [source]


    Light use efficiency of dry matter gain in five macro-lichens: relative impact of microclimate conditions and species-specific traits

    PLANT CELL & ENVIRONMENT, Issue 1 2000
    K. Palmqvist
    ABSTRACT Relations between irradiance (I) and lichen growth were investigated for five macro-lichens growing at two sites in Sweden. The lichens represented different mycobiont,photobiont associations, two morphologies (foliose, fruticose) and two life forms (epiphytic, terricolous). The lichens were transplanted at two geographically distant sites in Sweden (1000 km apart) from Sept 1995 to Sept 1996 in their typical microhabitats, where microclimate and growth were followed. Between April/May and Sept 96, the terricolous species had a dry matter gain of 0·2 to 0·4 g (g DW),1 and the epiphytes 0·01 to 0·02 g (g DW),1. When related to area, growth amounted to 30 to 70 g m,2 for the terricolous species and to 1 to 4 g m,2 for the epiphytes. There was a strong correlation between growth and intercepted irradiance when the lichens were wet (Iwet), with 0·2 to 1·1 g lichen dry matter being produced per MJ solar energy. Across the 10 sets of transplants, light use efficiencies of dry matter yield (e) ranged between 0·5 and 2%, using an energy equivalent of 17·5 kJ g,1 of lichen dry matter. The higher productivity of the terricolous species was due to longer periods with thallus water contents sufficient for metabolic activity and because of the higher mean photon flux densities of their microhabitat. A four-fold difference in photosynthetic capacity among the species was also important. It is concluded that lichen dry matter gain was primarily related to net carbon gain during metabolically active periods, which was determined by light duration, photon flux density and photosynthetic capacity. [source]


    Site, vine state and responsiveness to the application of growth regulator fruitsetting agents

    AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 1 2009
    J.A. CONSIDINE
    Abstract Background and Aims:, This study was initiated to investigate local problems in obtaining consistent fruit-setting responses to a recommended treatment combination of gibberellic acid (GA3) and (2-chloroethyl)-trimethyl ammonium chloride (CCC), with vineyard managers returning to more traditional methods of either cincturing or applying 4-chlorophenoxy acetic acid (4-CPA). Methods and Results:, Five vineyard study sites located in the Chittering,Bindoon region of Western Australia were characterised by multivariate analysis using measures of vegetative and reproductive biomass. Two experiments were carried out in the vineyard to compare responses to combinations of GA3 and CCC. 4-CPA was used as an industry control. Bunch number was used as a novel covariate to adjust responses to individual vine and site factors. Berry volume increased in all vines and sites treated with GA3, irrespective of timing, but dry matter yield increased only in the youngest vineyards. The only site to show a significant response to CCC application was that with the highest vegetative biomass. Conclusions:, We conclude that site and management factors rather than growth regulator type, concentration or timing determined yield responsiveness (sugar production). Significance of the Study:, This study demonstrates a strong physiological and environmental effect on response to growth regulator application, reinforcing the importance of developing site-specific management practices. It shows how multivariate techniques may be used to characterise and compare vineyards, and also, how analysis of covariance using a new parameter, bunch number, may be used to enhance statistical of analysis of field experiments. [source]


    A quantitative review comparing the yield of switchgrass in monocultures and mixtures in relation to climate and management factors

    GCB BIOENERGY, Issue 1 2010
    DAN WANG
    Abstract Switchgrass (Panicum virgatum L.), a US Department of Energy model species, is widely considered for US biomass energy production. While previous studies have demonstrated the effect of climate and management factors on biomass yield and chemical characteristics of switchgrass monocultures, information is lacking on the yield of switchgrass grown in combination with other species for biomass energy. Therefore, the objective of this quantitative review is to compare the effect of climate and management factors on the yield of switchgrass monocultures, as well as on mixtures of switchgrass, and other species. We examined all peer-reviewed articles describing productivity of switchgrass and extracted dry matter yields, stand age, nitrogen fertilization (N), temperature (growing degree days), and precipitation/irrigation. Switchgrass yield was greater when grown in monocultures (10.9 t ha,1, n=324) than when grown in mixtures (4.4 t ha,1, n=85); yield in monocultures was also greater than the total yield of all species in the mixtures (6.9 t ha,1, n=90). The presence of legume species in mixtures increased switchgrass yield from 3.1 t ha,1 (n=65) to 8.9 t ha,1 (n=20). Total yield of switchgrass-dominated mixtures with legumes reached 9.9 t ha,1 (n=25), which was not significantly different from the monoculture yield. The results demonstrated the potential of switchgrass for use as a biomass energy crop in both monocultures and mixtures across a wide geographic range. Monocultures, but not mixtures, showed a significant positive response to N and precipitation. The response to N for monocultures was consistent for newly established (stand age <3 years) and mature stands (stand age ,3 years) and for lowland and upland ecotypes. In conclusion, these results suggest that fertilization with N will increase yield in monocultures, but not mixtures. For monocultures, N treatment need not be changed based on ecotype and stand age; and for mixtures, legumes should be included as an alternative N source. [source]


    Effect of Drought Stress on Yield and Quality of Maize/Sunflower and Maize/Sorghum Intercrops for Biogas Production

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2010
    S. SchittenhelmArticle first published online: 16 FEB 2010
    Abstract Intercropping represents an alternative to maize (Zea mays L.) monoculture to provide substrate for agricultural biogas production. Maize was intercropped with either sunflower (Helianthus annuus L.) or forage sorghum [Sorghum bicolor (L.) Moench] to determine the effect of seasonal water supply on yield and quality of the above-ground biomass as a fermentation substrate. The two intercrop partners were grown in alternating double rows at plant available soil water levels of 60,80 %, 40,50 % and 15,30 % under a foil tunnel during the years 2006 and 2007 at Braunschweig, Germany. Although the intercrop dry matter yields in each year increased with increasing soil moisture, the partner crops responded quite differently. While maize produced significantly greater biomass under high rather than low water supply in each year, forage sorghum exhibited a significant yield response only in 2006, and sunflower in none of the 2 years. Despite greatly different soil moisture contents, the contribution of sorghum to the intercrop dry matter yield was similar, averaging 43 % in 2006 and 40 % in 2007. Under conditions of moderate and no drought stress, sunflower had a dry matter yield proportion of roughly one-third in both years. In the severe drought treatment, however, sunflower contributed 37 % in 2006 and 54 % in 2007 to the total intercrop dry matter yield. The comparatively good performance of sunflower under conditions of low water supply is attributable to a fast early growth, which allows this crop to exploit the residual winter soil moisture. While the calculated methane-producing potential of the maize/sorghum intercrop was not affected by the level of water supply, the maize/sunflower intercrop in 2006 had a higher theoretically attainable specific methane yield under low and medium than under high water supply. Nevertheless, the effect of water regime on substrate composition within the intercrops was small in comparison with the large differences between the intercrops. [source]


    Strategies to Improve the Use Efficiency of Mineral Fertilizer Nitrogen Applied to Winter Wheat

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2002
    K. Blankenau
    Recovery of fertilizer nitrogen (N) applied to winter wheat crops at tillering in spring is lower than that of N applied at later growth stages because of higher losses and immobilization of N. Two strategies to reduce early N losses and N immobilization and to increase N availability for winter wheat, which should result in an improved N use efficiency (= higher N uptake and/or increased yield per unit fertilizer N), were evaluated. First, 16 winter wheat trials (eight sites in each of 1996 and 1997) were conducted to investigate the effects of reduced and increased N application rates at tillering and stem elongation, respectively, on yield and N uptake of grain. In treatment 90-70-60 (90 kg N ha,1 at tillering, 70 kg N ha,1 at stem elongation and 60 kg N ha,1 at ear emergence), the average values for grain yield and grain N removal were up to 3.1 and 5.0 % higher than in treatment 120-40-60, reflecting conventional fertilizer practice. Higher grain N removal for the treatment with reduced N rates at tillering, 90-70-60, was attributed to lower N immobilization (and N losses), which increased fertilizer N availability. Secondly, as microorganisms prefer NH4+ to NO3, for N immobilization, higher net N immobilization would be expected after application of the ammonium-N form. In a pot experiment, net N immobilization was higher and dry matter yields and crop N contents at harvest were lower with ammonium (ammonium sulphate + nitrification inhibitor Dicyandiamide) than with nitrate (calcium nitrate) nutrition. Five field trials were then conducted to compare calcium nitrate (CN) and calcium ammonium nitrate (CAN) nutrition at tillering, followed by two CAN applications for both treatments. At harvest, crop N and grain yield were higher in the CN than in the CAN treatment at each N supply level. In conclusion, fertilizer N use efficiency in winter wheat can be improved if N availability to the crops is increased as a result of reduced N immobilization (and N losses) early in the growth period. N application systems could be modified towards strategies with lower N applications at tillering compensated by higher N dressing applications later. An additional advantage is expected to result from use of nitrate-N fertilizers at tillering. Strategien zur Verbesserung der Effizienz von Düngerstickstoff in Winterweizen Aus früheren Versuchen mit Winterweizen ist bekannt, daß zur Ernte die Wiederfindung von im Frühjahr zur Bestokkung gedüngtem Stickstoff (N) geringer ist, als die von N aus Spätgaben. Die Ursachen liegen in einer höheren mikrobiell-bedingten Netto-N-Immobilisation, aber auch N-Verlusten zwischen Bestockung und Schoßbeginn im Vergleich zu späteren Wachstumstadien begründet. In den vorliegenden Versuchen wurden zwei Strategien getestet, um insbesondere die früh in der Vegetation auftretende Netto-N-Immobilisation zu vermindern. Die dadurch erwartete erhöhte N-Verfügbarkeit sollte zu einer erhöhten N-Effizienz (höherer N-Entzug/Ertrag bezogen auf die N-Düngung) führen. 1996 und 1997 wurden jeweils 8 Feldversuche mit Winterweizen durchgeführt, um den Einfluß einer reduzierten Andüngung bei gleichzeitig erhöhter Schossergabe im Vergleich zur konventionellen N-Düngung zu untersuchen. Tatsächlich wurden in dem Prüfglied 90-70-60 (N-Sollwertdüngung: 90 kg N ha,1, Schossergabe: 70 kg N ha,1, Ährengabe: 60 kg N ha,1) im Mittel bis zu 3.1 % höhere Erträge und 5.0 % höhere N-Abfuhren mit dem Korn im Vergleich zur konventionellen Variante 120-40-60 (N-Sollwertdüngung: 120 kg N ha,1, Schossergabe: 40 kg N ha,1 und Ährengabe: 60 kg N ha,1) erzielt. Die höhere N-Abfuhr kann auf eine erhöhte N-Verfügbarkeit infolge geringerer mikrobieller N-Festlegung zurückgeführt werden. Da die vornehmlich heterotrophen Bodenmikroorganismen bevorzugt NH4+ gegenüber NO3, immobilisieren, kann eine höhere N-Immobilisation bei Ammonium-Düngung erwartet werden. Tatsächlich wurden in einem Gefäßversuch nach Düngung von Ammoniumsulfat (+ Nitrifikationshemmer Dicyandiamid) geringere Trokkenmasseerträge und N-Aufnahmen von Weizenpflanzen erzielt als mit Calciumnitrat. Für die Ammoniumsulfatvariante ergab sich eine höhere Netto-N-Immobilisation. Danach wurde in fünf Feldversuchen mit Winterweizen der Einfluß einer Andüngung mit Nitrat (Calciumnitrat) im Vergleich zur Verwendung des ammoniumhaltigen Kalkammonsalpeters (KAS) auf die N-Aufnahme und den Kornertrag untersucht (beide Varianten erhielten KAS als Spätgaben). In der nitratangedüngten Variante wurden zum Teil signifikant höhere Ertäge und N-Aufnahmen in Korn und Stroh ermittelt. Aus den dargestellten Versuchen kann gefolgert werden, daß die Düngerstickstoff-Effizienz verbessert werden kann, wenn vor allem die N-Immobilisation (und eventuell auch N-Verluste) in frühen Wachstumsstadien zwischen Bestockung und Schoßbeginn verringert und so die N-Verfügbarkeit erhöht wird. Es kann empfohlen werden Winterweizenbestände mit geringeren N-Mengen , als nach N-Sollwert 120 kg N ha,1 vorgesehen , anzudüngen und die Schossergabe entsprechend zu erhöhen. Die Verwendung von nitrathaltigen Düngern bei der Andüngung ist von Vorteil. [source]


    Implications of magnetar non-precession

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2010
    K. Glampedakis
    ABSTRACT The objects known as anomalous X-ray pulsars and soft gamma repeaters are commonly identified with magnetars, neutron stars with ultrastrong magnetic fields. The rotational history of these objects has, so far, revealed no evidence of free precession. At the same time, these objects do not generally appear to have magnetic axes nearly parallel or orthogonal to their spin axes. In this Letter we show that the combination of these two observations, together with simple rigid-body dynamics, leads to non-trivial predictions about the interior properties of magnetars: either (i) elastic stresses in magnetar crusts are close to the theoretical upper limit above which the crustal matter yields or (ii) there is a ,pinned' superfluid component in the magnetar interior. As a potentially observable consequence of these ideas we point out that in the case of no pinned superfluidity, magnetars of stronger magnetic field strength than those currently observed would have to be nearly aligned/orthogonal rotators. [source]


    Evaluation of the effects of resistance to stem nematode (Ditylenchus dipsaci) in white clover (Trifolium repens L.) under sheep grazing and cutting

    PLANT BREEDING, Issue 4 2007
    T. A. Williams
    Abstract Two field experiments were carried out to analyze the performance of white clover varieties differing in their resistance to stem nematode. Varieties were compared under grazing and cutting regimes in mixed swards with or without the addition of nematode and dry matter yields of white clover and perennial ryegrass recorded over a 3-year period. The resistant variety did not show a yield advantage in the absence of nematode but did so in the presence of nematode in the first year and for several of the sampling dates in the second year. White clover yields under grazing were significantly less than under cutting in both experiments. The hypothesis that the additional stress of grazing would increase the benefits of resistance relative to a cutting management was not supported. [source]


    Sowing density and harvest time affect fibre content in hemp (Cannabis sativa) through their effects on stem weight

    ANNALS OF APPLIED BIOLOGY, Issue 2 2009
    W. Westerhuis
    Abstract Sowing density and harvest time are considered important crop management factors influencing fibre quantity and quality in hemp (Cannabis sativa). We investigated whether the effects of these factors are essentially different or that both factors affect stem weight and thereby total and long-fibre content. The effects of all combinations of three sowing densities and three harvest times were studied for six different stem parts. Almost 500 samples consisting of stem parts from 50 plants and with a length of 50 cm were tested. Fibres were extracted by a controlled warm-water retting procedure, followed by breaking and scutching. The initial sample weight was fractionated into retting losses, wood, tow and long fibre. In both Italy and the Netherlands, crops were successfully established with different stem densities (99,283 m,2), plant heights (146,211 cm) and stem diameters (4.5,8.4 mm) at harvest. Stem dry matter yields (6.8,11.7 Mg ha,1) increased with a delay in harvest time but were not affected by sowing density. Retting loss percentages were lower in lower stem parts and decreased with later harvest because maturation was associated with increasing amounts of fibre and wood. Within a certain stem part, however, the absolute retting losses were constant with harvest time. Multiple linear regression analyses showed that the amount of fibre in a hemp stem is almost completely determined by the weight and the position of that stem part. When the plant grows, the increase in dry matter is split up into fibres and wood in a fixed way. This total fibre/wood ratio was highest in the middle part of the stem and lower towards both bottom and top. Sowing density and harvest time effects were indirect through stem weight. The long-fibre weight per stem increased with the total fibre weight and hence with stem weight. Stem weight increased with harvest time; as harvest time did not affect plant density, the highest long-fibre yields were obtained at the last harvest time. The long fibre/total fibre ratio was lowest in the bottom 5 cm of the stems but similar for all other parts. Sowing density and harvest time effects again were indirect. Fibre percentages in retted hemp decreased with increasing stem weights towards a level that is presumably a variety characteristic. The dry matter increase between harvests, however, is much more important with respect to total and long-fibre yield. [source]