Matter Haloes (matter + halo)

Distribution by Scientific Domains

Kinds of Matter Haloes

  • cold dark matter halo
  • dark matter halo


  • Selected Abstracts


    Effects of galaxy-halo alignment and adiabatic contraction on gravitational lens statistics

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    Quinn E. Minor
    ABSTRACT We study the strong gravitational lens statistics of triaxial cold dark matter haloes occupied by central early-type galaxies. We calculate the image separation distribution for double, cusp and quad configurations. The ratios of image multiplicities at large separations are consistent with the triaxial NFW model, and at small separations are consistent with the singular isothermal ellipsoid model. At all the separations, the total lensing probability is enhanced by adiabatic contraction. If no adiabatic contraction is assumed, naked cusp configurations become dominant at ,2.5 arcsec, which is inconsistent with the data. We also show that at small-to-moderate separations (,5 arcsec) the image multiplicities depend sensitively on the alignment of the shapes of the luminous and dark matter projected density profiles. In contrast to other properties that affect these ratios, the degree of alignment does not have a significant effect on the total lensing probability. These correlations may therefore be constrained by comparing the theoretical image separation distribution to a sufficiently large lens sample from future wide and deep sky surveys such as Pan-Stars, LSST and JDEM. Understanding the correlations in the shapes of galaxies and their dark matter halo is important for future weak lensing surveys. [source]


    Dynamical response to supernova-induced gas removal in spiral galaxies with dark matter halo

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Hiroko Koyama
    ABSTRACT We investigate the dynamical response, in terms of disc size and rotation velocity, to mass loss by supernovae in the evolution of spiral galaxies. A thin baryonic disc having the Kuzmin density profile embedded in a spherical dark matter halo having a density profile proposed by Navarro, Frenk & White is considered. For the purpose of comparison, we also consider the homogeneous and r,1 profiles for dark matter in a truncated spherical halo. Assuming for simplicity that the dark matter distribution is not affected by mass-loss from discs and the change of baryonic disc matter distribution is homologous, we evaluate the effects of dynamical response in the resulting discs. We found that the dynamical response only for an adiabatic approximation of mass-loss can simultaneously account for the rotation velocity and disc size as observed particularly in dwarf spiral galaxies, thus reproducing the Tully,Fisher relation and the size versus magnitude relation over the full range of magnitude. Furthermore, we found that the mean specific angular momentum in discs after the mass-loss becomes larger than that before the mass-loss, suggesting that the mass-loss would most likely occur from the central disc region where the specific angular momentum is low. [source]


    Global m= 1 instabilities and lopsidedness in disc galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    V. Dury
    ABSTRACT Lopsidedness is common in spiral galaxies. Often, there is no obvious external cause, such as an interaction with a nearby galaxy, for such features. Alternatively, the lopsidedness may have an internal cause, such as a dynamical instability. In order to explore this idea, we have developed a computer code that searches for self-consistent perturbations in razor-thin disc galaxies and performed a thorough mode-analysis of a suite of dynamical models for disc galaxies embedded in an inert dark matter halo with varying amounts of rotation and radial anisotropy. Models with two equal-mass counter-rotating discs and fully rotating models both show growing lopsided modes. For the counter-rotating models, this is the well-known counter-rotating instability, becoming weaker as the net rotation increases. The m= 1 mode of the maximally rotating models, on the other hand, becomes stronger with increasing net rotation. This rotating m= 1 mode is reminiscent of the eccentricity instability in near-Keplerian discs. To unravel the physical origin of these two different m= 1 instabilities, we studied the individual stellar orbits in the perturbed potential and found that the presence of the perturbation gives rise to a very rich orbital behaviour. In the linear regime, both instabilities are supported by aligned loop orbits. In the non-linear regime, other orbit families exist that can help support the modes. In terms of density waves, the counter-rotating m= 1 mode is due to a purely growing Jeans-type instability. The rotating m= 1 mode, on the other hand, grows as a result of the swing amplifier working inside the resonance cavity that extends from the disc centre out to the radius where non-rotating waves are stabilized by the model's outwardly rising Q profile. [source]


    Is AGN feedback necessary to form red elliptical galaxies?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    A. Khalatyan
    ABSTRACT We have used the smoothed particle hydrodynamics (SPH) code gadget-2 to simulate the formation of an elliptical galaxy in a group-size cosmological dark matter halo with mass Mhalo, 3 × 1012 h,1 M, at z= 0. The use of a stellar population synthesis model has allowed us to compute magnitudes, colours and surface brightness profiles. We have included a model to follow the growth of a central black hole and we have compared the results of simulations with and without feedback from active galactic nuclei (AGN). We have studied the interplay between cold gas accretion and merging in the development of galactic morphologies, the link between colour and morphology evolution, the effect of AGN feedback on the photometry of early-type galaxies, the redshift evolution in the properties of quasar hosts, and the impact of AGN winds on the chemical enrichment of the intergalactic medium (IGM). We have found that the early phases of galaxy formation are driven by the accretion of cold filamentary flows, which form a disc galaxy at the centre of the dark matter halo. Disc star formation rates in this mode of galaxy growth are about as high as the peak star formation rates attained at a later epoch in galaxy mergers. When the dark matter halo is sufficiently massive to support the propagation of a stable shock, the gas in the filaments is heated to the virial temperature, cold accretion is shut down, and the star formation rate begins to decline. Mergers transform the spiral galaxy into an elliptical one, but they also reactivate star formation by bringing gas into the galaxy. Without a mechanism that removes gas from the merger remnants, the galaxy ends up with blue colours, which are atypical for its elliptical morphology. We have demonstrated that AGN feedback can solve this problem even with a fairly low heating efficiency. Our simulations support a picture where AGN feedback is important for quenching star formation in the remnant of wet mergers and for moving them to the red sequence. This picture is consistent with recent observational results, which suggest that AGN hosts are galaxies in migration from the blue cloud to the red sequence on the colour,magnitude diagram. However, we have also seen a transition in the properties of AGN hosts from blue and star forming at z, 2 to mainly red and dead at z, 0. Ongoing merging is the primary but not the only triggering mechanism for luminous AGN activity. Quenching by AGN is only effective after the cold filaments have dried out, since otherwise the galaxy is constantly replenished with gas. AGN feedback also contributes to raising the entropy of the hot IGM by removing low-entropy tails vulnerable to developing cooling flows. We have also demonstrated that AGN winds are potentially important for the metal enrichment of the IGM a high redshift. [source]


    Spatial distribution of luminous X-ray binaries in spiral galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Zhao-yu Zuo
    ABSTRACT We have modelled the spatial distribution of luminous X-ray binaries (XRBs) in spiral galaxies that are like the Milky Way using an evolutionary population synthesis code. In agreement with previous theoretical expectations and observations, we find that both high- and low-mass XRBs show clear concentrations towards the galactic plane and bulge. We also compare XRB distributions under the galactic potential with a dark matter halo and the modified Newtonian dynamics potential, and we suggest that the difference may serve as potential evidence to discriminate between these two types of model. [source]


    GHASP: an H, kinematic survey of spiral and irregular galaxies , V. Dark matter distribution in 36 nearby spiral galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    M. Spano
    ABSTRACT The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry,Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution H, 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The H, velocities were combined with low resolution H i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro,Frenk,White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type. [source]


    The polar ring galaxy AM1934,563 revisited,

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    Noah Brosch
    ABSTRACT We report long-slit spectroscopic observations of the dust-lane polar ring galaxy AM1934,563 obtained with the Southern African Large Telescope (SALT) during its performance verification phase. The observations target the spectral region of the H,, [N ii] and [S ii] emission lines, but also show deep Na i absorption lines, that we interpret as being produced by stars in the galaxy. We derive rotation curves along the major axis of the galaxy that extend out to about 8 kpc from the centre for both the gaseous and the stellar components, using the emission and absorption lines. We derive similar rotation curves along the major axis of the polar ring and point out differences between these and the ones of the main galaxy. We identify a small diffuse object visible only in H, emission and with a low velocity dispersion as a dwarf H ii galaxy and argue that it is probably metal poor. Its velocity indicates that it is a fourth member of the galaxy group in which AM1934,563 belongs. We discuss the observations in the context of the proposal that the object is the result of tidal mater transfer from a major neighbour galaxy and point out some observational discrepancies from this explanation. We argue that an alternative scenario that could better fit the observations may be the slow accretion of cold intergalactic gas, focused by a dense filament of galaxies in which this object is embedded. Given the pattern of rotation we found, with the asymptotic rotation of the gas in the ring being slower than that in the disc while both components have approximately the same extent, we point out that AM1934,563 may be a galaxy in which a dark matter halo is flattened along the galactic disc and the first object in which this predicted behaviour of polar ring galaxies in dark matter haloes is fulfilled. [source]


    Kinematics of hypervelocity stars in the triaxial halo of the Milky Way

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    Qingjuan Yu
    ABSTRACT Hypervelocity stars (HVSs) ejected by the massive black hole at the Galactic Centre have unique kinematic properties compared to other halo stars. Their trajectories will deviate from being exactly radial because of the asymmetry of the Milky Way potential produced by the flattened disc and the triaxial dark matter halo, causing a change of angular momentum that can be much larger than the initial small value at injection. We study the kinematics of HVSs and propose an estimator of dark halo triaxiality that is determined only by instantaneous position and velocity vectors of HVSs at large Galactocentric distances (r, 50 kpc). We show that, in the case of a substantially triaxial halo, the distribution of deflection angles (the angle between the stellar position and velocity vector) for HVSs on bound orbits is spread uniformly over the range 10°,180°. Future astrometric and deep wide-field surveys should measure the positions and velocities of a significant number of HVSs, and provide useful constraints on the shape of the Galactic dark matter halo. [source]


    Where are z= 4 Lyman Break Galaxies?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
    Results from conditional luminosity function models of luminosity-dependent clustering
    ABSTRACT Using the conditional luminosity function (CLF) , the luminosity distribution of galaxies in a dark matter halo , as a way to model galaxy statistics, we study how z= 4 Lyman Break Galaxies (LBGs) are distributed in dark matter haloes. For this purpose, we measure luminosity-dependent clustering of LBGs in the Subaru/XMM,Newton Deep Field by separating a sample of 16 920 galaxies to three magnitude bins in i, band between 24.5 and 27.5. Our model fits to data show a possible trend for more-luminous galaxies to appear as satellites in more-massive haloes; the minimum halo mass in which satellites appear is 3.9+4.1,3.5× 1012, 6.2+3.8,4.9× 1012 and 9.6+7.0,4.6× 1012 M, (1, errors) for galaxies with 26.5 < i, < 27.5, 25.5 < i, < 26.5 and 24.5 < i, < 25.5 mag, respectively. The satellite fraction of galaxies at z= 4 in these magnitude bins is 0.13,0.3, 0.09,0.22 and 0.03,0.14, respectively, where the 1, ranges account for differences coming from two different estimates of the z= 4 LF from the literature. To jointly explain the LF and the large-scale linear bias factor of z= 4 LBGs as a function of rest UV luminosity requires central galaxies to be brighter in UV at z= 4 than present-day galaxies in same dark matter mass haloes. Moreover, UV luminosity of central galaxies in haloes with total mass greater than roughly 1012 M, must decrease from z= 4 to today by an amount more than the luminosity change for galaxies in haloes below this mass. This mass-dependent luminosity evolution is preferred at more than 3, confidence level compared to a pure-luminosity evolution scenario where all galaxies decrease in luminosity by the same amount from z= 4 to today. The scenario preferred by the data is consistent with the ,downsizing' picture of galaxy evolution. [source]


    The properties of Ly, emitting galaxies in hierarchical galaxy formation models

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
    M. Le Delliou
    ABSTRACT We present detailed predictions for the properties of Ly,-emitting galaxies in the framework of the , cold dark matter cosmology, calculated using the semi-analytical galaxy formation model galform. We explore a model that assumes a top-heavy initial mass function in starbursts and that has previously been shown to explain the sub-millimetre number counts and the luminosity function of Lyman-break galaxies at high redshift. We show that this model, with the simple assumption that a fixed fraction of Ly, photons escape from each galaxy, is remarkably successful at explaining the observed luminosity function of Ly, emitters (LAEs) over the redshift range 3 < z < 6.6. We also examine the distribution of Ly, equivalent widths and the broad-band continuum magnitudes of emitters, which are in good agreement with the available observations. We look more deeply into the nature of LAEs, presenting predictions for fundamental properties such as the stellar mass and radius of the emitting galaxy and the mass of the host dark matter halo. The model predicts that the clustering of LAEs at high redshifts should be strongly biased relative to the dark matter, in agreement with observational estimates. We also present predictions for the luminosity function of LAEs at z > 7, a redshift range that is starting to be be probed by near-infrared surveys and using new instruments such as the Dark Ages Z Lyman Explorer (DAzLE). [source]


    Halo model at its best: constraints on conditional luminosity functions from measured galaxy statistics

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
    Asantha Cooray
    ABSTRACT Using the conditional luminosity function (CLF; the luminosity distribution of galaxies in a dark matter halo) as the fundamental building block, we present an empirical model for the galaxy distribution. The model predictions are compared with the published luminosity function (LF) and clustering statistics from the Sloan Digital Sky Survey (SDSS) at low redshifts, galaxy correlation functions from the Classifying Objects by Medium-Band Observations 17 (COMBO-17) survey at a redshift of 0.6, the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey at a redshift of unity, the Great Observatories Deep Origins Survey (GOODS) at a redshift around 3 and the Subaru/XMM,Newton Deep Field data at a redshift of 4. The comparison with statistical measurements allows us to constrain certain parameters related to analytical descriptions on the relation between a dark matter halo and its central galaxy luminosity, its satellite galaxy luminosity, and the fraction of early- and late-type galaxies of that halo. With the SDSS r -band LF at Mr < ,17, the lognormal scatter in the central galaxy luminosity at a given halo mass in the central galaxy,halo mass, Lc(M), relation is constrained to be 0.17+0.02,0.01, with 1, errors here and below. For the same galaxy sample, we find no evidence for a low-mass cut-off in the appearance of a single central galaxy in dark matter haloes, with the 68 per cent confidence level upper limit on the minimum mass of dark matter haloes to host a central galaxy, with luminosity Mr < ,17, is 2 × 1010 h,1 M,. If the total luminosity of a dark matter halo varies with halo mass as Lc(M) (M/Msat),s when M > Msat, using SDSS data, we find that Msat= (1.2+2.9,1.1) × 1013 h,1 M, and power-law slope ,s= 0.56+0.19,0.17 for galaxies with Mr < ,17 at z < 0.1. At z, 0.6, the COMBO-17 data allows these parameters for MB < ,18 galaxies to be constrained as (3.3+4.9,3.0) × 1013 h,1 M, and (0.62+0.33,0.27), respectively. At z, 4, Subaru measurements constrain these parameters for MB < ,18.5 galaxies as (4.12+5.90,4.08) × 1012 h,1 M, and (0.55+0.32,0.35), respectively. The redshift evolution associated with these parameters can be described as a combination of the evolution associated with the halo mass function and the luminosity,halo mass relation. The single parameter well constrained by clustering measurements is the average of the total satellite galaxy luminosity corresponding to the dark matter halo distribution probed by the galaxy sample. For SDSS, ,Lsat,= (2.1+0.8,0.4) × 1010 h,2 L,, while for GOODS at z, 3, ,Lsat, < 2 × 1011 h,2 L,. For SDSS, the fraction of galaxies that appear as satellites is 0.13+0.03,0.03, 0.11+0.05,0.02, 0.11+0.12,0.03 and 0.12+0.33,0.05 for galaxies with luminosities in the r, band from ,22 to ,21, ,21 to ,20, ,20 to ,19 and ,19 to ,18, respectively. In addition to constraints on central and satellite CLFs, we also determine model parameters of the analytical relations that describe the fraction of early- and late-type galaxies in dark matter haloes. We use our CLFs to establish the probability distribution of halo mass in which galaxies of a given luminosity could be found either at halo centres or as satellites. Finally, to help establish further properties of the galaxy distribution, we propose the measurement of cross-clustering between galaxies divided into two distinctly different luminosity bins. Our analysis shows how CLFs provide a stronger foundation to built-up analytical models of the galaxy distribution when compared with models based on the halo occupation number alone. [source]


    Circular velocity profiles of dark matter haloes

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
    Felix Stoehr
    ABSTRACT We use a high-resolution simulation of a galaxy-sized dark matter halo, published simulated data as well as four cluster-sized haloes from Fukushige, Kawai & Makino to study the inner halo structure in a , cold dark matter cosmology. We find that the circular velocity curves are substantially better described by Stoehr et al. (SWTS) profiles than by Navarro, Frenk & White (NFW) or Moore et al. profiles. Our findings confirm that no asymptotic slope is reached and that the profiles are nearly universal, but not perfectly. The velocity profiles curve at a constant rate in log (r) over the full converged range in radii and the corresponding extrapolated density profiles reach a finite maximum density. We find that the claim of a strong discrepancy between the observed inner slopes of the density profiles of low surface brightness galaxies and their simulated counterparts on the grounds of currently available observations and simulations is unfounded. In addition, if the SWTS profile turns out to be a good description of the halo profile for the regions that cannot be probed with simulations of today, then even in these regions the agreement between simulations and observations is very reasonable. [source]


    The 2dF QSO Redshift Survey , XIV.

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
    Structure, evolution from the two-point correlation function
    ABSTRACT In this paper we present a clustering analysis of quasi-stellar objects (QSOs) using over 20 000 objects from the final catalogue of the 2dF QSO Redshift Survey (2QZ), measuring the redshift-space two-point correlation function, ,(s). When averaged over the redshift range 0.3 < z < 2.2 we find that ,(s) is flat on small scales, steepening on scales above ,25 h,1 Mpc. In a WMAP/2dF cosmology (,m= 0.27, ,,= 0.73) we find a best-fitting power law with s0= 5.48+0.42,0.48 h,1 Mpc and ,= 1.20 ± 0.10 on scales s= 1 to 25 h,1 Mpc. We demonstrate that non-linear redshift-space distortions have a significant effect on the QSO ,(s) at scales less than ,10 h,1 Mpc. A cold dark matter model assuming WMAP/2dF cosmological parameters is a good description of the QSO ,(s) after accounting for non-linear clustering and redshift-space distortions, and allowing for a linear bias at the mean redshift of bQ(z= 1.35) = 2.02 ± 0.07. We subdivide the 2QZ into 10 redshift intervals with effective redshifts from z= 0.53 to 2.48. We find a significant increase in clustering amplitude at high redshift in the WMAP/2dF cosmology. The QSO clustering amplitude increases with redshift such that the integrated correlation function, , within 20 h,1 Mpc is and . We derive the QSO bias and find it to be a strong function of redshift with bQ(z= 0.53) = 1.13 ± 0.18 and bQ(z= 2.48) = 4.24 ± 0.53. We use these bias values to derive the mean dark matter halo (DMH) mass occupied by the QSOs. At all redshifts 2QZ QSOs inhabit approximately the same mass DMHs with MDH= (3.0 ± 1.6) × 1012 h,1 M,, which is close to the characteristic mass in the Press,Schechter mass function, M*, at z= 0. These results imply that L*Q QSOs at z, 0 should be largely unbiased. If the relation between black hole (BH) mass and MDH or host velocity dispersion does not evolve, then we find that the accretion efficiency (L/LEdd) for L*Q QSOs is approximately constant with redshift. Thus the fading of the QSO population from z, 2 to ,0 appears to be due to less massive BHs being active at low redshift. We apply different methods to estimate, tQ, the active lifetime of QSOs and constrain tQ to be in the range 4 × 106,6 × 108 yr at z, 2. We test for any luminosity dependence of QSO clustering by measuring ,(s) as a function of apparent magnitude (equivalent to luminosity relative to L*Q). However, we find no significant evidence of luminosity-dependent clustering from this data set. [source]


    Is the dark halo of our Galaxy spherical?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004
    Amina Helmi
    ABSTRACT It has been recently claimed that the confined structure of the debris from the Sagittarius dwarf implies that the dark matter halo of our Galaxy should be nearly spherical, in strong contrast with predictions from cold dark matter simulations, where dark haloes are found to have typical density axis ratios of 0.6,0.8. In this paper, numerical simulations are used to show that the Sagittarius streams discovered thus far are too young dynamically to be sensitive to the shape of the dark halo of the Milky Way. The data presently available are entirely consistent with a Galactic dark matter halo that could be either oblate or prolate, with minor-to-major density axis ratios as low as 0.6 within the region probed by the orbit of the Sagittarius dwarf. [source]


    The nature of galaxy bias and clustering

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2000
    A. J. Benson
    We have used a combination of high resolution cosmological N -body simulations and semi-analytic modelling of galaxy formation to investigate the processes that determine the spatial distribution of galaxies in cold dark matter (CDM) models and its relation to the spatial distribution of dark matter. The galaxy distribution depends sensitively on the efficiency with which galaxies form in haloes of different mass. In small mass haloes, galaxy formation is inhibited by the reheating of cooled gas by feedback processes, whereas in large mass haloes, it is inhibited by the long cooling time of the gas. As a result, the mass-to-light ratio of haloes has a deep minimum at the halo mass, ,1012 M,, associated with L* galaxies, where galaxy formation is most efficient. This dependence of galaxy formation efficiency on halo mass leads to a scale-dependent bias in the distribution of galaxies relative to the distribution of mass. On large scales, the bias in the galaxy distribution is related in a simple way to the bias in the distribution of massive haloes. On small scales, the correlation function is determined by the interplay between various effects including the spatial exclusion of dark matter haloes, the distribution function of the number of galaxies occupying a single dark matter halo and, to a lesser extent, dynamical friction. Remarkably, these processes conspire to produce a correlation function in a flat, ,0=0.3, CDM model that is close to a power law over nearly four orders of magnitude in amplitude. This model agrees well with the correlation function of galaxies measured in the automated-plate measurement survey. On small scales, the model galaxies are less strongly clustered than the dark matter, whereas on large scales they trace the occupied haloes. Our clustering predictions are robust to changes in the parameters of the galaxy formation model, provided only those models which match the bright end of the galaxy luminosity function are considered. [source]


    An upper limit to the central density of dark matter haloes from consistency with the presence of massive central black holes

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2010
    X. Hernandez
    ABSTRACT We study the growth rates of massive black holes in the centres of galaxies from accretion of dark matter from their surrounding haloes. By considering only the accretion due to dark matter particles on orbits unbound to the central black hole, we obtain a firm lower limit to the resulting accretion rate. We find that a runaway accretion regime occurs on a time-scale which depends on the three characteristic parameters of the problem: the initial mass of the black hole, the volume density and velocity dispersion of the dark matter particles in its vicinity. An analytical treatment of the accretion rate yields results implying that, for the largest black hole masses inferred from quasi-stellar object (QSO) studies (>109 M,), the runaway regime would be reached on time-scales which are shorter than the lifetimes of the haloes in question for central dark matter densities in excess of 250 M, pc,3. Since reaching runaway accretion would strongly distort the host dark matter halo, the inferences of QSO black holes in this mass range lead to an upper limit on the central dark matter densities of their host haloes of ,0 < 250 M, pc,3. This limit scales inversely with the assumed central black hole mass. However, thinking of dark matter profiles as universal across galactic populations, as cosmological studies imply, we obtain a firm upper limit for the central density of dark matter in such structures. [source]


    Galaxy,galaxy lensing by non-spherical haloes , I. Theoretical considerations

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2010
    Paul J. Howell
    ABSTRACT We use a series of Monte Carlo simulations to investigate the theory of galaxy,galaxy lensing by non-spherical dark matter haloes. The simulations include a careful accounting of the effects of multiple deflections on the galaxy,galaxy lensing signal. In a typical observational data set where the mean tangential shear of sources with redshifts zs, 0.6 is measured with respect to the observed symmetry axes of foreground galaxies with redshifts zl, 0.3, we find that the signature of anisotropic galaxy,galaxy lensing differs substantially from the simple expectation that one would have in the absence of multiple deflections. In general, the observed ratio of the mean tangential shears, ,+(,)/,,(,), is strongly suppressed compared to the function that one would measure if the intrinsic symmetry axes of the foreground galaxies were known. Depending upon the characteristic masses of the lenses, the observed ratio of the mean tangential shears may be consistent with an isotropic signal (despite the fact that the lenses are non-spherical), or it may even be reversed from the expected signal (i.e. the mean tangential shear for sources close to the observed minor axes of the lenses may exceed the mean tangential shear for sources close to the observed major axes of the lenses). These effects are caused primarily by the fact that the images of the lens galaxies have, themselves, been lensed and therefore the observed symmetry axes of the lens galaxies differ from their intrinsic symmetry axes. We show that the effects of lensing of the foreground galaxies on the observed function ,+(,)/,,(,) cannot be eliminated simply by the rejection of foreground galaxies with very small image ellipticities nor by simply focusing the analysis on sources that are located very close to the observed symmetry axes of the foreground galaxies. We conclude that any attempt to use a measurement of ,+(,)/,,(,) to constrain the shapes of dark matter galaxy haloes must include Monte Carlo simulations that take multiple deflections properly into account. [source]


    The substructure hierarchy in dark matter haloes

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2010
    Carlo Giocoli
    ABSTRACT We present a new algorithm for identifying the substructure within simulated dark matter haloes. The method is an extension of that proposed by Tormen, Moscardini & Yoshida and Giocoli, Tormen & van den Bosch, which identifies a subhalo as a group of self-bound particles that prior to being accreted by the main progenitor of the host halo belonged to one and the same progenitor halo (hereafter ,satellite'). However, this definition does not account for the fact that these satellite haloes themselves may also have substructure, which thus gives rise to sub-subhaloes, etc. Our new algorithm identifies substructures at all levels of this hierarchy, and we use it to determine the mass function of all substructure (counting subhaloes, sub-subhaloes, etc.). On average, haloes which are formed more recently tend to have a larger mass fraction in substructure and to be less concentrated than average haloes of the same mass. We provide quantitative fits to these correlations. Even though our algorithm is very different from that of Gao et al., we also find that the subhalo mass function per unit mass at redshift z= 0 is universal. This universality extends to any redshift only if one accounts for the fact that host haloes of a given mass are less concentrated at higher redshifts, and concentration and substructure abundance are anticorrelated. This universality allows a simple parametrization of the subhalo mass function integrated over all host halo masses, at any given time. We provide analytic fits to this function which should be useful in halo model analyses which equate galaxies with halo substructure when interpreting clustering in large sky surveys. Finally, we discuss systematic differences in the subhalo mass function that arise from different definitions of (host) halo mass. [source]


    Gravitational flexion by elliptical dark matter haloes

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
    A. J. Hawken
    ABSTRACT We present equations for the gravitational lensing flexion expected for an elliptical lens mass distribution. These can be reduced to one-dimensional finite integrals, thus saving significant computing time over a full two-dimensional calculation. We estimate constraints on galaxy halo ellipticities for a range of potential future surveys, finding that the constraints from the two different types of flexion are comparable and are up to two orders of magnitude tighter than those from shear. Flexion therefore appears to be a very promising potential tool for constraining the shapes of galaxy haloes from future surveys. [source]


    The distribution of ejected subhaloes and its implication for halo assembly bias

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2009
    Huiyuan Wang
    ABSTRACT Using a high-resolution cosmological N -body simulation, we identify the ejected population of subhaloes, which are haloes at redshift z= 0 but were once contained in more massive ,host' haloes at high redshifts. The fraction of the ejected subhaloes in the total halo population of the same mass ranges from 9 to 4 per cent for halo masses from ,1011 to ,1012 h,1 M,. Most of the ejected subhaloes are distributed within four times the virial radius of their hosts. These ejected subhaloes have distinct velocity distribution around their hosts in comparison to normal haloes. The number of subhaloes ejected from a host of given mass increases with the assembly redshift of the host. Ejected subhaloes in general reside in high-density regions, and have a much higher bias parameter than normal haloes of the same mass. They also have earlier assembly times, so that they contribute to the assembly bias of dark matter haloes seen in cosmological simulations. However, the assembly bias is not dominated by the ejected population, indicating that large-scale environmental effects on normal haloes are the main source for the assembly bias. [source]


    Satellite kinematics , II.

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
    The halo mass, luminosity relation of central galaxies in SDSS
    ABSTRACT The kinematics of satellite galaxies reflect the masses of the extended dark matter haloes in which they orbit, and thus shed light on the mass,luminosity relation (MLR) of their corresponding central galaxies. In this paper, we select a large sample of centrals and satellites from the Sloan Digital Sky Survey and measure the kinematics (velocity dispersions) of the satellite galaxies as a function of the r -band luminosity of the central galaxies. Using the analytical framework presented in More, van den Bosch & Cacciato, we use these data to infer both the mean and the scatter of the MLR of central galaxies, carefully taking account of selection effects and biases introduced by the stacking procedure. As expected, brighter centrals on average reside in more massive haloes. In addition, we find that the scatter in halo masses for centrals of a given luminosity, ,log M, also increases with increasing luminosity. As we demonstrate, this is consistent with ,log L, which reflects the scatter in the conditional probability function P(Lc|M), being independent of halo mass. Our analysis of the satellite kinematics yields ,log L= 0.16 ± 0.04, in excellent agreement with constraints from clustering and group catalogues, and with predictions from a semi-analytical model of galaxy formation. We thus conclude that the amount of stochasticity in galaxy formation, which is characterized by ,log L, is well constrained, independent of halo mass and in a good agreement with current models of galaxy formation. [source]


    Effects of galaxy-halo alignment and adiabatic contraction on gravitational lens statistics

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    Quinn E. Minor
    ABSTRACT We study the strong gravitational lens statistics of triaxial cold dark matter haloes occupied by central early-type galaxies. We calculate the image separation distribution for double, cusp and quad configurations. The ratios of image multiplicities at large separations are consistent with the triaxial NFW model, and at small separations are consistent with the singular isothermal ellipsoid model. At all the separations, the total lensing probability is enhanced by adiabatic contraction. If no adiabatic contraction is assumed, naked cusp configurations become dominant at ,2.5 arcsec, which is inconsistent with the data. We also show that at small-to-moderate separations (,5 arcsec) the image multiplicities depend sensitively on the alignment of the shapes of the luminous and dark matter projected density profiles. In contrast to other properties that affect these ratios, the degree of alignment does not have a significant effect on the total lensing probability. These correlations may therefore be constrained by comparing the theoretical image separation distribution to a sufficiently large lens sample from future wide and deep sky surveys such as Pan-Stars, LSST and JDEM. Understanding the correlations in the shapes of galaxies and their dark matter halo is important for future weak lensing surveys. [source]


    Why are AGN found in high-mass galaxies?

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    Lan Wang
    ABSTRACT There is a strong observed mass dependence of the fraction of nearby galaxies that contain either low-luminosity [low-ionization nuclear emission-line region (LINER) type] or higher luminosity (Seyfert or composite type) active galactic nuclei (AGN). This implies that either only a small fraction of low-mass galaxies contain black holes, or that the black holes in these systems only accrete rarely or at very low rates, and hence are generally not detectable as AGN. In this paper, we use semi-analytic models implemented in the Millennium Simulation to analyse the mass dependence of the merging histories of dark matter haloes and of the galaxies that reside in them. Only a few per cent of galaxies with stellar masses less than M* < 1010 M, are predicted to have experienced a major merger. The fraction of galaxies that have experienced major mergers increases steeply at larger stellar masses. We argue that if a major merger is required to form the initial seed black hole, the mass dependence of AGN activity in local galaxies can be understood quite naturally. We then investigate when the major mergers that first create these black holes are predicted to occur. High-mass galaxies are predicted to have formed their first black holes at very early epochs. The majority of low-mass galaxies never experience a major merger and hence may not contain a black hole, but a significant fraction of the supermassive black holes that do exist in low-mass galaxies are predicted to have formed recently. [source]


    The tightening of wide binaries in dSph galaxies through dynamical friction as a test of the dark matter hypothesis

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2008
    X. Hernandez
    ABSTRACT We estimate the time-scales for orbital decay of wide binaries embedded within dark matter haloes, due to dynamical friction against the dark matter particles. We derive analytical scalings for this decay and calibrate and test them through the extensive use of N -body simulations, which accurately confirm the predicted temporal evolution. For density and velocity dispersion parameters as inferred for the dark matter haloes of local dSph galaxies, we show that the decay time-scales become shorter than the ages of the dSph stellar populations for binary stars composed of 1 M, stars, for initial separations larger than 0.1 pc. Such wide binaries are conspicuous and have been well measured in the solar neighbourhood. The prediction of the dark matter hypothesis is that they should now be absent from stellar populations embedded within low velocity dispersion, high-density dark mater haloes, as currently inferred for the local dSph galaxies, having since evolved into tighter binaries. Relevant empirical determinations of this will become technically feasible in the near future, and could provide evidence to discriminate between dark matter particle haloes or modified gravitational theories, to account for the high dispersion velocities measured for stars in local dSph galaxies. [source]


    Galaxy growth in the concordance ,CDM cosmology

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    Q. Guo
    ABSTRACT We use galaxy and dark halo data from the public database for the Millennium Simulation to study the growth of galaxies in the De Lucia et al. model for galaxy formation. Previous work has shown this model to reproduce many aspects of the systematic properties and the clustering of real galaxies, both in the nearby universe and at high redshift. It assumes the stellar masses of galaxies to increase through three processes, major mergers, the accretion of smaller satellite systems and star formation. We show the relative importance of these three modes to be a strong function of stellar mass and redshift. Galaxy growth through major mergers depends strongly on stellar mass, but only weakly on redshift. Except for massive systems, minor mergers contribute more to galaxy growth than major mergers at all redshifts and stellar masses. For galaxies significantly less massive than the Milky Way, star formation dominates the growth at all epochs. For galaxies significantly more massive than the Milky Way, growth through mergers is the dominant process at all epochs. At a stellar mass of 6 × 1010 M,, about that of the Milk Way, star formation dominates at z > 1 and mergers at later times. At every stellar mass, the growth rates through star formation increase rapidly with increasing redshift. Specific star formation rates are the decreasing function of stellar mass not only at z= 0 but also at all higher redshifts. For comparison, we carry out a similar analysis of the growth of dark matter haloes. In contrast to the galaxies, growth rates depend strongly on redshift, but only weakly on mass. They agree qualitatively with analytic predictions for halo growth. [source]


    Generating dark matter halo merger trees

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    Hannah Parkinson
    ABSTRACT We present a new Monte Carlo algorithm to generate merger trees describing the formation history of dark matter haloes. The algorithm is a modification of the algorithm of Cole et al. used in the galform semi-analytic galaxy formation model. As such, it is based on the Extended Press,Schechter theory and so should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the , cold dark matter Millennium N -body simulation. We present a comparison of its predictions not only with these conditional mass functions, but also with additional statistics of the Millennium Simulation halo merger histories. In all cases, we find it to be in good agreement with the Millennium Simulation and thus it should prove to be a very useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general. We have made our merger tree generation code and code to navigate the trees available at http://star-www.dur.ac.uk/~cole/merger_trees. [source]


    The 2dF-SDSS LRG and QSO survey: QSO clustering and the L,z degeneracy

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    J. DaÂngela
    ABSTRACT We combine the quasi-stellar object (QSO) samples from the 2dF QSO Redshift Survey (2QZ) and the 2dF-Sloan Digital Sky Survey luminous red galaxy (LRG) and QSO Survey (2dF-SDSS LRG and QSO, hereafter 2SLAQ) in order to investigate the clustering of z, 1.5 QSOs and measure the correlation function (,). The clustering signal in redshift-space and projected along the sky direction is similar to that previously obtained from the 2QZ sample alone. By fitting functional forms for ,(,, ,), the correlation function measured along and across the line of sight, we find, as expected, that ,, the dynamical infall parameter and ,0m, the cosmological density parameter, are degenerate. However, this degeneracy can be lifted by using linear theory predictions under different cosmological scenarios. Using the combination of the 2QZ and 2SLAQ QSO data, we obtain: ,QSO(z= 1.5) = 0.60+0.14,0.11, ,0m= 0.25+0.09,0.07 which imply a value for the QSO bias, b(z= 1.4) = 1.5 ± 0.2. The combination of the 2QZ with the fainter 2SLAQ QSO sample further reveals that QSO clustering does not depend strongly on luminosity at fixed redshift. This result is inconsistent with the expectation of simple ,high peaks' biasing models where more luminous, rare QSOs are assumed to inhabit higher mass haloes. The data are more consistent with models which predict that QSOs of different luminosities reside in haloes of similar mass. By assuming ellipsoidal models for the collapse of density perturbations, we estimate the mass of the dark matter haloes which the QSOs inhabit as ,3 × 1012 h,1 M,. We find that this halo mass does not evolve strongly with redshift nor depend on QSO luminosity. Assuming a range of relations which relate halo to black hole mass, we investigate how black hole mass correlates with luminosity and redshift, and ascertain the relation between Eddington efficiency and black hole mass. Our results suggest that QSOs of different luminosities may contain black holes of similar mass. [source]


    Reionization bias in high-redshift quasar near-zones

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    J. Stuart B. Wyithe
    ABSTRACT Absorption spectra of high-redshift quasars exhibit an increasingly thick Ly, forest, suggesting that the fraction of neutral hydrogen in the intergalactic medium (IGM) is increasing towards z, 6. However, the interpretation of these spectra is complicated by the fact that the Ly, optical depth is already large for neutral hydrogen fractions in excess of 10,4, and also because quasars are expected to reside in dense regions of the IGM. We present a model for the evolution of the ionization state of the IGM which is applicable to the dense, biased regions around high-redshift quasars as well as more typical regions in the IGM. We employ a cold dark matter based model in which the ionizing photons for reionization are produced by star formation in dark matter haloes spanning a wide range of masses, combined with numerical radiative transfer simulations which model the resulting opacity distribution in quasar absorption spectra. With an appropriate choice for the parameter which controls the star formation efficiency, our model is able to simultaneously reproduce the observed Ly, forest opacity at 4 < z < 6, the ionizing photon mean-free-path at z, 4 and the rapid evolution of highly ionized near-zone sizes around high-redshift quasars at 5.8 < z < 6.4. In our model, reionization extends over a wide redshift range, starting at z, 10 and completing as H ii regions overlap at z, 6,7. We find that within 5 physical Mpc of a high-redshift quasar, the evolution of the ionization state of the IGM precedes that in more typical regions by around 0.3 redshift units. More importantly, when combined with the rapid increase in the ionizing photon mean-free-path expected shortly after overlap, this offset results in an ionizing background near the quasar which exceeds the value in the rest of the IGM by a factor of ,2,3. We further find that in the post-overlap phase of reionization the size of the observed quasar near-zones is not directly sensitive to the neutral hydrogen fraction of the IGM. Instead, these sizes probe the level of the background ionization rate and the temperature of the surrounding IGM. The observed rapid evolution of the quasar near-zone sizes at 5.8 < z < 6.4 can thus be explained by the rapid evolution of the ionizing background, which in our model is caused by the completion of overlap at the end of reionization by 6 ,z, 7. [source]


    GHASP: an H, kinematic survey of spiral and irregular galaxies , V. Dark matter distribution in 36 nearby spiral galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    M. Spano
    ABSTRACT The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry,Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution H, 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The H, velocities were combined with low resolution H i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro,Frenk,White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type. [source]


    The polar ring galaxy AM1934,563 revisited,

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    Noah Brosch
    ABSTRACT We report long-slit spectroscopic observations of the dust-lane polar ring galaxy AM1934,563 obtained with the Southern African Large Telescope (SALT) during its performance verification phase. The observations target the spectral region of the H,, [N ii] and [S ii] emission lines, but also show deep Na i absorption lines, that we interpret as being produced by stars in the galaxy. We derive rotation curves along the major axis of the galaxy that extend out to about 8 kpc from the centre for both the gaseous and the stellar components, using the emission and absorption lines. We derive similar rotation curves along the major axis of the polar ring and point out differences between these and the ones of the main galaxy. We identify a small diffuse object visible only in H, emission and with a low velocity dispersion as a dwarf H ii galaxy and argue that it is probably metal poor. Its velocity indicates that it is a fourth member of the galaxy group in which AM1934,563 belongs. We discuss the observations in the context of the proposal that the object is the result of tidal mater transfer from a major neighbour galaxy and point out some observational discrepancies from this explanation. We argue that an alternative scenario that could better fit the observations may be the slow accretion of cold intergalactic gas, focused by a dense filament of galaxies in which this object is embedded. Given the pattern of rotation we found, with the asymptotic rotation of the gas in the ring being slower than that in the disc while both components have approximately the same extent, we point out that AM1934,563 may be a galaxy in which a dark matter halo is flattened along the galactic disc and the first object in which this predicted behaviour of polar ring galaxies in dark matter haloes is fulfilled. [source]