Mature T Cells (mature t + cell)

Distribution by Scientific Domains


Selected Abstracts


LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2010
Peter Tamás
Abstract The serine/threonine kinase LKB1 has a conserved role in Drosophila and nematodes to co-ordinate cell metabolism. During T lymphocyte development in the thymus, progenitors need to synchronize increased metabolism with the onset of proliferation and differentiation to ensure that they can meet the energy requirements for development. The present study explores the role of LKB1 in this process and shows that loss of LKB1 prevents thymocyte differentiation and the production of peripheral T lymphocytes. We find that LKB1 is required for several key metabolic processes in T-cell progenitors. For example, LKB1 controls expression of CD98, a key subunit of the L -system aa transporter and is also required for the pre-TCR to induce and sustain the regulated phosphorylation of the ribosomal S6 subunit, a key regulator of protein synthesis. In the absence of LKB1 TCR-,-selected thymocytes failed to proliferate and did not survive. LBK1 was also required for survival and proliferation of peripheral T cells. These data thus reveal a conserved and essential role for LKB1 in the proliferative responses of both thymocytes and mature T cells. [source]


IL-7 inhibits dexamethasone-induced apoptosis via Akt/PKB in mature, peripheral T cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2003
Hadassah Sade
Abstract We have investigated the mechanism of IL-7-mediated inhibition of dexamethasone-induced apoptosis in T cells. Broad-spectrum caspase inhibitors block dexamethasone-triggered nuclear fragmentation, but not the loss of mitochondrial transmembrane potential or membrane integrity in CD3+ mature T cells isolated from adult mouse spleens. IL-7 blocked dexamethasone-induced apoptosis and the processing of caspase-3 and caspase-7. IL-7 also blocked dexamethasone-triggered dephosphorylation of the serine-threonine kinase Akt/PKB and its target, the Ser136 residue in Bad. The loss of anti-apoptotic proteins Bcl-xL and inhibitor of apoptosis protein-2 (IAP-2) was also blocked by IL-7. The protective effect was attenuated by pharmacological inhibitors of phosphatidylinositol-3 kinase (PI3K) with one exception: inhibition of PI3K did not abrogate Bcl-xL expression in the presence of IL-7. The anti-apoptotic role of Akt suggested by these experiments was tested by overexpression of constitutively active Akt, which blocked dexamethasone-induced apoptosis and elevated IAP-2 but not Bcl-xL levels in a mature T cell line. Thus, IL-7 regulates IAP-2 expression and inhibits dexamethasone-induced apoptosis by activating Akt via PI3K-dependent signaling, but regulates Bcl-xL expression via a PI3K-independent pathway in mature T cells. [source]


Sexual dimorphism in the spontaneous recovery from spinal cord injury: a gender gap in beneficial autoimmunity?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2002
Ehud Hauben
Abstract Immune cells have been shown to contribute to spontaneous recovery from central nervous system (CNS) injury. Here we show that adult female rats and mice recover significantly better than their male littermates from incomplete spinal cord injury (ISCI). This sexual dimorphism is wiped out and recovery is worse in adult mice deprived of mature T cells. After spinal cord contusion in adult rats, functional recovery (measured by locomotor scores in an open field) was significantly worse in females treated with dihydrotestosterone prior to the injury than in placebo-treated controls, and significantly better in castrated males than in their noncastrated male littermates. Post-traumatic administration of the testosterone receptor antagonist flutamide promoted the functional recovery in adult male rats. These results, in line with the known inhibitory effect of testosterone on cell-mediated immunity, suggest that androgen-mediated immunosuppression plays a role in ISCI-related immune dysfunction and can therefore partly explain the worse outcome of ISCI in males than in female. We suggest that females, which are more prone to develop autoimmune response than males, benefit from this response in cases of CNS insults. [source]


Functional characterization of T cells differentiated in vitro from bone marrow-derived CD34+ cells of psoriatic patients with family history

EXPERIMENTAL DERMATOLOGY, Issue 8 2010
Kaiming Zhang
Please cite this paper as: Functional characterization of T cells differentiated in vitro from bone marrow-derived CD34+ cells of psoriatic patients with family history. Experimental Dermatology 2010; 19: e128,e135. Abstract Background:, The strong but complex genetic background suggests that inherent and intrinsic rather than exogenous factors have a key role in immunopathogenesis of psoriasis. It is reasonable to speculate that the dysfunctional activity of psoriatic T cells may partly originate from the abnormal haematopoietic cells. Objectives:, To test if T cells originated from haematopoietic progenitor cells in psoriasis patients display functional alternations similar to previously reported abnormalities of circulating T cells. Methods:, Bone marrow CD34+ haematopoietic cells were isolated from psoriatic patients with family history and healthy subjects, and differentiated into T cells in vitro in the thymic stromal co-culture system. These cells were further subjected to functional comparisons such as in vitro proliferation, secretion of cytokines such as IL-4, IL-8 and IFN,,, and inducing the production of C-myc, Bcl-xL, and Ki67 proteins in human keratinocytes. Results:, While bone marrow-derived CD34+ cells from both patients and healthy volunteers developed into mature T cells within weeks in the thymic environment in vitro, the differentiated T cells from psoriatic patients showed higher proliferation and stronger capacity to secret TH1 cytokines in response to streptococcal superantigen. The differentiated T cells from psoriatic patients, but not from normal controls, induced overexpression of C-myc and Ki67, but not Bcl-XL, in keratinocytes. Conclusions:, T cells differentiated from CD34+ cells of psoriatic patients, but not normal controls, are functionally similar to psoriatic circulating T cells, suggesting that the dysfunctional activity of T cells in psoriatic patients can be traced back to the early development of haematopoietic cells. [source]


T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance

IMMUNOLOGICAL REVIEWS, Issue 1 2009
Robert J. Salmond
Summary:, T-cell development in the thymus and activation of mature T cells in secondary lymphoid organs requires the ability of cells to respond appropriately to environmental signals at multiple stages of their development. The process of thymocyte selection insures a functional T-cell repertoire, while activation of naive peripheral T cells induces proliferation, gain of effector function, and, ultimately, long-lived T-cell memory. The T-cell immune response is initiated upon engagement of the T-cell receptor (TCR) and coreceptor, CD4 or CD8, by cognate antigen/major histocompatibility complexes presented by antigen-presenting cells. TCR/coreceptor engagement induces the activation of biochemical signaling pathways that, in combination with signals from costimulator molecules and cytokine receptors, direct the outcome of the response. Activation of the src- family kinases p56lck (Lck) and p59fyn (Fyn) is central to the initiation of TCR signaling pathways. This review focuses on our current understanding of the mechanisms by which these two proteins orchestrate T-cell function. [source]


Recent insights into the signals that control ,,/,,-lineage fate

IMMUNOLOGICAL REVIEWS, Issue 1 2006
Jens Peter H. Lauritsen
Summary:, During thymopoiesis, two major types of mature T cells are generated that can be distinguished by the clonotypic subunits contained within their T-cell receptor (TCR) complexes: ,, T cells and ,, T cells. Although there is no consensus as to the exact developmental stage where ,, and ,, T-cell lineages diverge, ,, T cells and precursors to the ,, T-cell lineage (bearing the pre-TCR) are thought to be derived from a common CD4,CD8, double-negative precursor. The role of the TCR in ,,/,, lineage commitment has been controversial, in particular whether different TCR isotypes intrinsically favor adoption of the corresponding lineage. Recent evidence supports a signal strength model of lineage commitment, whereby stronger signals promote ,, development and weaker signals promote adoption of the ,, fate, irrespective of the TCR isotype from which the signals originate. Moreover, differences in the amplitude of activation of the extracellular signal-regulated kinase- mitogen-activated protein kinase-early growth response pathway appear to play a critical role. These findings will be placed in context of previous analyses in an effort to more precisely define the signals that control T-lineage fate during thymocyte development. [source]


Haematopoietic antigen-presenting cells in the human thymic cortex: evidence for a role in selection and removal of apoptotic thymocytes,

THE JOURNAL OF PATHOLOGY, Issue 1 2008
LC Paessens
Abstract Only a small proportion of thymocytes survive T cell selection in the thymus and leave the thymus as mature T cells. The vast majority of thymocytes undergo cell death during selection, either due to failure to undergo positive selection on self peptide-MHC presented by thymic antigen presenting cells (APC) or due to negative selection. In the murine thymus it has been shown that most thymocytes that fail selection undergo apoptosis in the thymic cortex and are removed by cortical macrophages. However, it is unknown how apoptotic thymocytes are cleared from the cortex of the human thymus. Here we report the identification of antigen-presenting cells of haematopoietic origin (hAPCs) by expression of dendritic cell (DC) specific C-type lectin DC-SIGN (CD209) in the cortex of the human thymus, and show that these cells exhibit features of both immature DCs and macrophages. The analysis of cellular markers, in particular the expression of the molecular chaperone HLA-DM, on cortical hAPCs further suggests that these hAPCs may participate in selection of thymocytes in the cortex. Using in situ terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), we demonstrated that these cortical hAPCs are surrounded by apoptotic, TUNEL+ thymocytes in situ. Futhermore, in situ immuno-cryo-electron microscopy suggests that cortical hAPCs take up and remove apoptotic thymocytes. Thus, DC-SIGN+ hAPCs in the human thymic cortex appear to function in thymocyte selection and removal of apoptotic thymocytes from the thymic cortex. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


How to outwit the enemy: dendritic cells face Salmonella,

APMIS, Issue 9 2006
Review article
Salmonella enterica serovar Typhi causes typhoid fever, a serious life-threatening systemic infection. In mice, a similar disease is caused by Salmonella enterica serovar Typhimurium. During typhoid fever, soon after attachment to the mucosal surface of the gut, bacteria come into contact with the dendritic cells (DCs). The ability to sample antigens, process and present them to na,Đve and mature T cells, in the context of major histocompatibility complex molecules, makes DCs indispensable for mounting a specific and efficient immune response to invading pathogens. These bacteria, however, have evolved a number of mechanisms to interfere with or subvert DC functions. This review aims to describe how Salmonella clashes with dendritic cells at different stages of infection as well as the war strategies of these two opposing sides. [source]