Home About us Contact | |||
Mature Rabbits (mature + rabbits)
Selected AbstractsOvariectomy increases vascular calcification via the OPG/RANKL cytokine signalling pathwayEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2008B. G. Choi ABSTRACT Background, Observational studies suggest a strong relationship between menopause and vascular calcification. Receptor activator of nuclear factor-,, ligand (RANKL) and osteoprotegerin (OPG) are critical regulators of bone remodelling and modulate vascular calcification. We assessed the hypothesis that ovariectomy increases vascular calcification via the OPG/RANKL axis. Materials and methods, Age-matched sexually mature rabbits were randomized to ovariectomy (OVX, n = 12) or sham procedure (SHAM, n = 12). One month post-procedure, atherosclerosis was induced by 15 months 0·2%-cholesterol diet and endothelial balloon denudations (at months 1 and 3). Aortic atherosclerosis was assessed in vivo by magnetic resonance imaging (MRI) at months 9 and 15. At sacrifice, aortas were harvested for ex vivo microcomputed tomography (µCT) and molecular analysis of the vascular tissue. Results, Vascular calcification density and calcific particle number were significantly greater in OVX than SHAM (8·4 ± 2·8 vs. 1·9 ± 0·6 mg cm,3, P = 0·042, and 94 ± 26 vs. 33 ± 7 particles cm,3, P = 0·046, respectively). Calcification morphology, as assessed by the arc angle subtended by the largest calcific particle, showed no difference between groups (OVX 33 ± 7° vs. SHAM 33 ± 5°, P = 0·99). By Western blot analysis, OVX increased the vascular OPG:RANKL ratio by 66%, P = 0·029, primarily by decreasing RANKL (P = 0·019). At month 9, MRI demonstrated no difference in atheroma volume between OVX and SHAM, and no significant change was seen by the end of the study. Conclusions, In contrast to bone, vascular OPG:RANKL ratio increased in response to ovariectomy with a corresponding fourfold increase in arterial calcification. This diametrical organ-specific response may explain the comorbid association of osteoporosis with calcifying atherosclerosis in post-menopausal women. [source] Joint capsule mast cells and neuropeptides are increased within four weeks of injury and remain elevated in chronic stages of posttraumatic contracturesJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2008Kevin A. Hildebrand Abstract The purpose of this article was to determine mast cell and neuropeptide nerve fiber numbers in joint capsules in posttraumatic contractures, as elevated numbers have been implicated in other fibrotic and contracture conditions. Twelve skeletally mature rabbits had intraarticular cortical windows removed from the medial and lateral femoral condyles and the knee joint immobilized. The contralateral unoperated limb served as a control. Equal numbers of rabbits were sacrificed 4 weeks after surgery or 40 weeks after the first surgery that included 32 weeks of remobilization. Six patients with chronic posttraumatic elbow joint contractures and six age-matched organ donor controls free of elbow contractures were also studied. Joint capsule myofibroblast, mast cell, and neuropeptide containing nerve fiber numbers were assessed with immunohistochemistry. The numbers of myofibroblasts, mast cells, and neuropeptide containing nerve fibers expressed as a percentage of total cells were significantly greater in the contracture capsules when compared to the control capsules at all time points (p,<,0.0001). The range of percentages for the three components in the contracture capsules versus the controls were 41,48% versus 9,10%, 44,50% versus 11,13%, and 45,50% versus 10,12% for the acute and chronic stages of the rabbit model and the chronic stages in the human elbows, respectively. These data support the hypothesis that a myofibroblast,mast cell,neuropeptide fibrosis axis may underlie some of the pathologic changes in the joint capsule in posttraumatic contractures. Approaches designed to manipulate this axis, such as preventing degranulation of mast cells, warrant further investigation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1313,1319, 2008 [source] Mechanisms determining cholinergic neural responses in airways of young and mature rabbits,PEDIATRIC PULMONOLOGY, Issue 2 2004Gary L. Larsen MD Abstract Neural pathways help control airway caliber and responsiveness. Yet little is known of how neural control changes as a function of development. In rabbits, we found electrical field stimulation (EFS) of airway nerves led to more marked contractile responses in 2- vs. 13-week-old animals. This enhanced response to EFS may be due to prejunctional, junctional, and/or postjunctional neural mechanisms. We assessed these mechanisms in airways of 2- and 13-week-old rabbits. The contractile responses to methacholine did not differ in the groups, suggesting postjunctional neural events are not primarily responsible for differing responses to EFS. To address junctional events, acetylcholinesterase (AChE) was measured (spectrophotometry). AChE was elevated in 2-week-olds. However, this should lead to less and not greater responses. Prejunctionally, EFS-induced acetylcholine (ACh) release was assessed by HPLC. Airways of 2-week-old rabbits released significantly more ACh than airways from mature rabbits. Choline acetyltransferase, a marker of cholinergic nerves, was not different between groups, suggesting that more ACh release in young rabbits was not due to increased nerve density. ACh release in the presence of polyarginine increased significantly in both groups, supporting the presence of functional muscarinic autoreceptors (M2) at both ages. Because substance P (SP) increases release of ACh, SP was measured by ELISA. This neuropeptide was significantly elevated in airways of younger rabbits. Nerve growth factor (NGF) increased SP and was also significantly increased in airways from younger rabbits. This work suggests that increases in EFS-induced responsiveness in young rabbits are likely due to prejunctional events with enhanced release of ACh. Increases in NGF and SP early in life may contribute to this increased responsiveness. Pediatr Pulmonol. 2004; 38:97,106. © 2004 Wiley-Liss, Inc. [source] |