Mature Part (mature + part)

Distribution by Scientific Domains


Selected Abstracts


Characterisation of preYvaY export reveals differences in the substrate specificities of Bacillus subtilis and Escherichia coli leader peptidases

FEMS MICROBIOLOGY LETTERS, Issue 1 2003
Dirk Linde
Abstract Translocation, processing and secretion of YvaY, a Bacillus subtilis protein of unknown function, were characterised both in B. subtilis and in Escherichia coli. In its natural host B. subtilis, YvaY was transiently synthesised at the end of the exponential growth phase. It was efficiently secreted into the culture supernatant in spite of a calculated membrane spanning domain in the mature part of the protein. In E. coli, despite the high conservation of Sec-dependent transport components, processing of preYvaY was strongly impaired. To uncover which elements of E. coli and B. subtilis translocation systems are responsible for the observed substrate specificity, components of the B. subtilis Sec-system were co-expressed besides yvaY in E. coli. Expression of B. subtilis secA or secYEG genes did not affect processing, but expression of B. subtilis signal peptidase genes significantly enhanced processing of preYvaY in E. coli. While the major signal peptidases SipS or SipT had a strong stimulatory effect on preYvaY processing, the minor signal peptidases SipU, SipV or SipW had a far less stimulatory effect in E. coli. These results reveal that targeting and translocation of preYvaY is mediated by the E. coli Sec proteins but processing of preYvaY is not performed by E. coli signal peptidase LepB. Thus, differences in substrate specificities of E. coli LepB and the B. subtilis Sip proteins provide the bottleneck for export of YvaY in E. coli. Significant slower processing of preYvaY in absence of SecB indicated that SecB mediates targeting of the B. subtilis precursor. [source]


Predation by brown trout: a major mortality factor for sexually mature European minnows

JOURNAL OF FISH BIOLOGY, Issue 3 2003
J. Museth
Brown trout Salmo trutta in the subalpine lake, Øvre Heimdalsvatn, showed large temporal variation in the rate of predation on the introduced minnow Phoxinus phoxinus population. Minnows were found in the stomachs of brown trout between 16 and 38 cm LT. Significantly greater predation was recorded shortly after ice break at the end of June 1999, with frequencies of 9 and 20% within the LT classes 16,29·9 cm and ,30 cm, respectively. Predation on minnows was only occasionally detected during July, August and September. The high level of predation coincided with minnow spawning, and lengths of consumed minnows were equal to those of sexually mature individuals. Accepting a causal link between minnow spawning, which lasted c. 3 weeks, and the contemporary high rate of predation, the estimated annual consumption of minnows by the brown trout population would be 138 kg wet mass. Although most of the annual consumption of minnows by brown trout (90%) occurred within a very short period (3 weeks), it accounted for a significant proportion (60%) of the annual loss in biomass of the sexually mature part of the population. [source]


OIL-PRONE LOWER CARBONIFEROUS COALS IN THE NORWEGIAN BARENTS SEA: IMPLICATIONS FOR A PALAEOZOIC PETROLEUM SYSTEM

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2010
J.H. Van Koeverden
In this study, we assess the oil generation potential of Lower Carboniferous, liptinite-rich coals in the Tettegras Formation on the Finnmark Platform, southern Norwegian Barents Sea. Oil from these coals has been expelled into intercalated sandstones. The coals may have contributed to petroleum recorded in well 7128/4,1 on the Finnmark Platform and may constitute a new Palaeozoic source rock in the Barents Sea. The Tettegras Formation coals contain up to 80 vol.% liptinite (mineral matter free base) and have low oxygen indices. Hydrogen indices up to 367 mg HC/g TOC indicate liquid hydrocarbon potential. In wells 7128/4,1 and 7128/6,1, the coals have vitrinite reflectance Ro= 0.75,0.85 %. Compared to shale and carbonate source rocks, expulsion from coal in general begins at higher maturities (Ro= 0.8,0.9% and Tmax= 444,453°C). Thus, the coals in the wells are mostly immature with regard to oil expulsion. The oil in well 7128/4,1 most likely originates from a more mature part of the Tettegras Formation in the deeper northern part of the Finnmark Platform. Wide variations in biomarker facies parameters and ,13C isotope values indicate a heterogeneous paralic depositional setting. The preferential retention by coal strata of naphthenes (e.g. terpanes and steranes) and aromatic compounds, compared to n-alkanes and acyclic isoprenoids, results in a terrigenous and waxy oil. This oil however contains marine biomarkers derived from the intercalated shales and siltstones. It is therefore important to consider the entire coal-bearing sequence, including the intercalated shales, in terms of source rock potential. Coals of similar age occur on Svalbard and Bjørnøya. The results of this study therefore suggest that a Lower Carboniferous coaly source rock may extend over large areas of the Norwegian Barents Sea. This source rock is mature in areas where the otherwise prolific Upper Jurassic marine shales are either immature or missing and may constitute a new Palaeozoic coal-sourced petroleum system in the Barents Sea. [source]


Single amino acid repeats in signal peptides

FEBS JOURNAL, Issue 15 2010
abaj
There has been an increasing interest in single amino acid repeats ever since it was shown that these are the cause of a variety of diseases. Although a systematic study of single amino acid repeats is challenging, they have subsequently been implicated in a number of functional roles. In general surveys, leucine runs were among the most frequent. In the present study, we present a detailed investigation of repeats in signal peptides of secreted and type I membrane proteins in comparison with their mature parts. We focus on eukaryotic species because single amino acid repeats are generally rather rare in archaea and bacteria. Our analysis of over 100 species shows that repeats of leucine (but not of other hydrophobic amino acids) are over-represented in signal peptides. This trend is most pronounced in higher eukaryotes, particularly in mammals. In the human proteome, although less than one-fifth of all proteins have a signal peptide, approximately two-thirds of all leucine repeats are located in these transient regions. Signal peptides are cleaved early from the growing polypeptide chain and then degraded rapidly. This may explain why leucine repeats, which can be toxic, are tolerated at such high frequencies. The substantial fraction of proteins affected by the strong enrichment of repeats in these transient segments highlights the bias that they can introduce for systematic analyses of protein sequences. In contrast to a general lack of conservation of single amino acid repeats, leucine repeats were found to be more conserved than the remaining signal peptide regions, indicating that they may have an as yet unknown functional role. [source]