Mature Oligodendrocytes (mature + oligodendrocyte)

Distribution by Scientific Domains


Selected Abstracts


Maintenance of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAK

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009
Kumi Kawai
Abstract Highly purified oligodendroglial lineage cells from mice lacking functional bax and bak genes were resistant to apoptosis after in-vitro differentiation, indicating an essential role of the intrinsic apoptotic pathway in apoptosis of oligodendrocytes in the absence of neurons (axons) and other glial cells. These mice therefore provide a valuable tool with which to evaluate the significance of the intrinsic apoptotic pathway in regulating the population sizes of oligodendrocytes and oligodendroglial progenitor cells. Quantitative analysis of the optic nerves and the dorsal columns of the spinal cord revealed that the absolute numbers of mature oligodendrocytes immunolabeled for aspartoacylase and adult glial progenitor cells expressing NG2 chondroitin sulfate proteoglycan were increased in both white matter tracts of adult bax/bak -deficient mice and, to a lesser extent, bax -deficient mice, except that there was no increase in NG2-positive progenitor cells in the dorsal columns of these strains of mutant mice. These increases in mature oligodendrocytes and progenitor cells in bax/bak -deficient mice were unexpectedly proportional to increases in numbers of axons in these white matter tracts, thus retaining the oligodendroglial lineage to axon ratios of at most 1.3-fold of the physiological numbers. This is in contrast to the prominent expansion in numbers of neural precursor cells in the subventricular zones of these adult mutant mice. Our study indicates that homeostatic control of cell number is different for progenitors of the oligodendroglial and neuronal lineages. Furthermore, regulatory mechanism(s) operating in addition to apoptotic elimination through the intrinsic pathway, appear to prevent the overproduction of highly mitotic oligodendroglial progenitor cells. [source]


Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
Yasuhisa Tamura
Abstract In the adult mammalian brain, multipotent stem or progenitor cells involved in reproduction of neurons and glial cells have been well investigated only in very restricted regions; the subventricular zone of the lateral ventricle and the dentate gyrus in the hippocampal formation. In the neocortex, a series of in vitro studies has suggested the possible existence of neural progenitor cells possessing neurogenic and/or gliogenic potential in adult mammals. However, the cellular properties of the cortical progenitor cells in vivo have not been fully elucidated. Using 5,-bromodeoxyuridine labeling and immunohistochemical analysis of cell differentiation markers, we found that a subpopulation of NG2-immunopositive cells co-expressing doublecortin (DCX), an immature neuron marker, ubiquitously reside in the adult rat neocortex. Furthermore, these cells are the major population of proliferating cells in the region. The DCX(+)/NG2(+) cells reproduced the same daughter cells, or differentiated into DCX(+)/NG2(,) (approximately 1%) or DCX(,)/NG2(+) (approximately 10%) cells within 2 weeks after cell division. The DCX(+)/NG2(,) cells were also immunopositive for TUC-4, a neuronal linage marker, suggesting that these cells were committed to neuronal cell differentiation, whereas the DCX(,)/NG2(+) cells showed faint immunoreactivity for glutathione S-transferase (GST)-pi, an oligodendrocyte lineage marker, in the cytoplasm, suggesting glial cell lineage, and thereafter the cells differentiated into NG2(,)/GST-pi(+) mature oligodendrocytes after a further 2 weeks. These findings indicate that DCX(+)/NG2(+) cells ubiquitously exist as ,multipotent progenitor cells' in the neocortex of adult rats. [source]


Glial cell loss, proliferation and replacement in the contused murine spinal cord

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007
Judith M. Lytle
Abstract Studies in the rat have shown that contusive spinal cord injury (SCI) results in devastating pathology, including significant loss of mature oligodendrocytes and astrocytes even in spared white matter. Subsequently, there is increased proliferation of endogenous NG2+ cells, postulated to contribute to replacement of mature glia chronically, which is important for functional recovery. Studies of mechanisms that stimulate endogenous progenitor cells would be facilitated by using mouse models with naturally occurring and genetically engineered mutations. To determine whether the murine response is similar to that in the rat, we performed contusive SCI on adult female C57Bl/6 mice at the T8,9 level. Animals received bromodeoxyuridine injections in the first week following injury and were killed at 1, 3, 4, 7 or 28 days postinjury (DPI). The overall loss of macroglia and the temporal,spatial response of NG2+ cells after SCI in the (C57Bl/6) mouse was very similar to that in the (Sprague,Dawley) rat. By 24 h after SCI nearly half of the macroglia in spared ventral white matter had been lost. Cell proliferation was increased at 1,7 DPI, peaking at 3,4 DPI. Dividing cells included NG2+ cells and Cd11b+ macrophages and microglia. Furthermore, cells dividing in the first week expressed markers of mature glia at 28 DPI. The similarities in endogenous progenitor cell response to SCI in the mouse and rat suggest that this is a fundamental injury response, and that transgenic mouse models may be used to further probe how this cellular response to SCI might be enhanced to improve recovery after SCI. [source]


Minocycline attenuates hypoxia,ischemia-induced neurological dysfunction and brain injury in the juvenile rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2006
Lir-Wan Fan
Abstract To investigate whether minocycline provides long-lasting protection against neonatal hypoxia,ischemia-induced brain injury and neurobehavioral deficits, minocycline was administered intraperitoneally in postnatal day 4 Sprague,Dawley rats subjected to bilateral carotid artery occlusion followed by exposure to hypoxia (8% oxygen for 15 min). Brain injury and myelination were examined on postnatal day 21 (P21) and tests for neurobehavioral toxicity were performed from P3 to P21. Hypoxic,ischemic insults resulted in severe white matter injury, enlarged ventricles, deficits in the hippocampus, reduction in numbers of mature oligodendrocytes and tyrosine hydroxylase-positive neurons, damage to axons and dendrites, and impaired myelination, as indicated by the decrease in myelin basic protein immunostaining in the P21 rat brain. Hypoxic,ischemic insult also significantly affected physical development (body weight gain and eye opening) and neurobehavioral performance, including sensorimotor and locomotor function, anxiety and cognitive ability in the P21 rat. Treatments with minocycline significantly attenuated the hypoxia,ischemia-induced brain injury and improved neurobehavioral performance. The protection of minocycline was associated with its ability to reduce microglial activation. The present results show that minocycline has long-lasting protective effects in the neonatal rat brain in terms of both hypoxia,ischemia-induced brain injury and the associated neurological dysfunction. [source]


Identification of Tmem10/Opalin as an oligodendrocyte enriched gene using expression profiling combined with genetic cell ablation

GLIA, Issue 11 2008
Neev Golan
Abstract Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, which allows efficient and rapid propagation of action potentials. However, little is known about the molecular mechanisms operating at the onset of myelination and during maintenance of the myelin sheath in the adult. Here we use a genetic cell ablation approach combined with Affymetrix GeneChip microarrays to identify a number of oligodendrocyte-enriched genes that may play a key role in myelination. One of the "oligogenes" we cloned using this approach is Tmem10/Opalin, which encodes for a novel transmembrane glycoprotein. In situ hybridization and RT-PCR analysis revealed that Tmem10 is selectively expressed by oligodendrocytes and that its expression is induced during their differentiation. Developmental immunofluorescence analysis demonstrated that Tmem10 starts to be expressed in the white matter tracks of the cerebellum and the corpus callosum at the onset of myelination after the appearance of other myelin genes such as MBP. In contrast to the spinal cord and brain, Tmem10 was not detected in myelinating Schwann cells, indicating that it is a CNS-specific myelin protein. In mature oligodendrocytes, Tmem10 was present at the cell soma and processes, as well as along myelinated internodes, where it was occasionally concentrated at the paranodes. In myelinating spinal cord cultures, Tmem10 was detected in MBP-positive cellular processes that were aligned with underlying axons before myelination commenced. These results suggest a possible role of Tmem10 in oligodendrocyte differentiation and CNS myelination. © 2008 Wiley-Liss, Inc. [source]


Astrocyte-specific expression of a soluble form of the murine complement control protein Crry confers demyelination protection in the cuprizone model

GLIA, Issue 14 2007
Dustin T. Briggs
Abstract Complement has been implicated as a potential effector mechanism in neurodegeneration; yet the precise role of complement in this process remains elusive. In this report, we have utilized the cuprizone model of demyelination-remyelination to examine the contribution of complement to disease. C1q deposition was observed in the corpus callosum of C57BL/6 mice during demyelination, suggesting complement activation by apoptotic oligodendrocyte debris. Simultaneously, these mice lost expression of the rodent complement regulatory protein, Crry. A soluble CNS-specific form of the Crry protein (sCrry) expressed in a transgenic mouse under the control of an astrocyte-specific promoter was induced in the corpus callosum during cuprizone treatment. Expression of this protein completely protected the mice from demyelination. Interestingly, sCrry mice had low levels of demyelination at later times when control mice were remyelinating. Although the sCrry transgenic mice had lower levels of demyelination, there was no decrease in overall cellularity, however there were decreased numbers of microglia in the sCrry mice relative to controls. Strikingly, sCrry mice had early recovery of mature oligodendrocytes, although they later disappeared. TUNEL staining suggested that production of the sCrry protein in the transgenic mice protected from a late apoptosis event at 3 weeks of cuprizone treatment. Our data suggest complement provides some protection of mature oligodendrocytes during cuprizone treatment but may be critical for subsequent remyelination events. These data suggest that temporal restriction of complement inhibition may be required in some disease settings. © 2007 Wiley-Liss, Inc. [source]


Simvastatin regulates oligodendroglial process dynamics and survival

GLIA, Issue 2 2007
Veronique E. Miron
Abstract Simvastatin, a lipophilic statin that crosses the blood-brain barrier, is being evaluated as a potential therapy for multiple sclerosis (MS) due to its anti-inflammatory properties. We assessed the effects of simvastatin on cultures of rat newborn and human fetal oligodendrocyte progenitor cells (OPCs) and human adult mature oligodendrocytes (OLGs) with respect to cellular events pertaining to myelin maintenance and repair. Short-term simvastatin treatment of OPCs (1 day) induced robust process extension, enhanced differentiation to a mature phenotype, and decreased spontaneous migration. These effects were reversed by isoprenoid products and mimicked with an inhibitor of Rho kinase (ROCK), the downstream effector of the isoprenylated protein RhoA GTPase. Prolonged treatment (2 days) caused process retraction that was rescued by cholesterol, and increased cell death (4 days) partially rescued by either cholesterol or isoprenoid co-treatment. In comparison, simvastatin treatment of human mature OLGs required a longer initial time course (2 days) to induce significant process outgrowth, mimicked by inhibiting ROCK. Prolonged treatment of mature OLGs was associated with process retraction (6 days) and increased cell death (8 days). Human-derived OPCs and mature OLGs demonstrated an increased sensitivity to simvastatin relative to the rodent cells, responding to nanomolar versus micromolar concentrations. Our findings indicate the importance of considering the short- and long-term effects of systemic immunomodulatory therapies on neural cells affected by the MS disease process. © 2006 Wiley-Liss, Inc. [source]


PPAR gamma activators induce differentiation of B12 oligodendrocyte-like cells and rat spinal cord oligodendrocytes

JOURNAL OF NEUROCHEMISTRY, Issue 2002
A. D. Roth
The regulation of CNS lipid metabolism by nuclear receptors and their relation to cell differentiation remains undetermined. Since myelinating oligodendrocytes are the major lipid-synthesizing cells in the CNS, we characterized the effect of PPAR activation in a CNS derived cell line that expresses oligodendrocyte markers and compared these effects with oligodendrocyte primary cultures (90,95% pure). The rat glioma derived B12 cell line express the three major PPAR isoforms (PPAR ,, , and ,) and present a large number of peroxisomes, indicating an important lipid metabolism. Treatment with ciprofibrate, a general PPAR activator and clinical hypolipidemic, induces proliferation arrest, process extension and a moderate rise in the expression of acyl-CoA oxidase, a specific marker of peroxisomal proliferation. Cell growth arrest by ciprofibrate is enhanced 100-fold by low concentrations of retinoic acid (0.01 ,m), suggesting the involvement of the PPAR-retinoid acid receptor heterodimers. Since ciprofibrate possibly acts by modifying the concentration of endogenous PPAR ligands, we traced its effects to PPAR, by using isoform specific ligands: Troglitazone and 15-deoxy-prostaglandin J2, both of which induce growth arrest and process extension in B12 cells. These effects were corroborated on rat spinal cord derived oligodendrocytes primary cultures, where a significant rise in the number of mature oligodendrocytes is observed in response to PPAR, activators. These results show that PPAR,, a master gene in the differentiation of adipose tissue could be involved in the lipid metabolism of maturing oligodendrocytes. [source]


Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2010
Deanna L. Taylor
Abstract Activated microglia can influence the survival of neural cells through the release of cytotoxic factors. Here, we investigated the interaction between Toll-like receptor 4 (TLR4)-activated microglia and oligodendrocytes or their precursor cells (OPC). Primary rat or N9 microglial cells were activated by exposure to TLR4-specifc lipopolysaccharide (LPS), resulting in mitogen-activated protein kinase activation, increased CD68 and inducible nitric oxide synthase expression, and release of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6). Microglial conditioned medium (MGCM) from LPS-activated microglia attenuated primary OPC proliferation without inducing cell death. The microglial-induced inhibition of OPC proliferation was reversed by stimulating group III metabotropic glutamate receptors in microglia with the agonist L-AP4. In contrast to OPC, LPS-activated MGCM enhanced the survival of mature oligodendrocytes. Further investigation suggested that TNF and IL-6 released from TLR4-activated microglia might contribute to the effect of MGCM on OPC proliferation, insofar as TNF depletion of LPS-activated MGCM reduced the inhibition of OPC proliferation, and direct addition of TNF or IL-6 attenuated or increased proliferation, respectively. OPC themselves were also found to express proteins involved in TLR4 signalling, including TLR4, MyD88, and MAL. Although LPS stimulation of OPC did not induce proinflammatory cytokine release or affect their survival, it did trigger JNK phosphorylation, suggesting that TLR4 signalling in these cells is active. These findings suggest that OPC survival may be influenced not only by factors released from endotoxin-activated microglia but also through a direct response to endotoxins. This may have consequences for myelination under conditions in which microglial activation and cerebral infection are both implicated. © 2010 Wiley-Liss, Inc. [source]


Insulin-like growth factor-I-stimulated Akt phosphorylation and oligodendrocyte progenitor cell survival require cholesterol-enriched membranes

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2009
Robert J. Romanelli
Abstract Previously we showed that insulin-like growth factor-I (IGF-I) promotes sustained phosphorylation of Akt in oligodendrocyte progenitor cells (OPCs) and that Akt phosphorylation is required for survival of these cells. The direct mechanisms, however, by which IGF-I promotes Akt phosphorylation are currently undefined. Recently, cholesterol-enriched membranes (CEMs) have been implicated in regulation of growth factor-mediated activation of the PI3K/Akt pathway and survival of mature oligodendrocytes; however, less is know about their role in OPC survival. In the present study, we investigate the role of CEMs in IGF-I-mediated Akt phosphorylation and OPC survival. We report that acute disruption of membrane cholesterol with methyl-,-cyclodextrin results in altered OPC morphology and inhibition of IGF-I-mediated Akt phosphorylation. We also report that long-term inhibition of cholesterol biosynthesis with 25-hydroxycholesterol blocks IGF-I stimulated Akt phosphorylation and cell survival. Moreover, we show that the PI3K regulatory subunit, p85, Akt, and the IGF-IR are sequestered within cholesterol-enriched fractions in steady-state stimulation of the IGF-IR and that phosphorylated Akt and IGF-IR are present in cholesterol-enriched fractions with IGF-I stimulation. Together, the results of these studies support a role for CEMs or "lipid rafts" in IGF-I-mediated Akt phosphorylation and provide a better understanding of the mechanisms by which IGF-I promotes OPC survival. © 2009 Wiley-Liss, Inc. [source]


The reaction of glial progenitor cells in remyelination following ethidium bromide-induced demyelination in the mouse spinal cord

NEUROPATHOLOGY, Issue 4 2002
Shigeko Fushimi
The present study investigated how glial progenitor cells participated in the process of remyelination following ethidium bromide (EBr)-induced demyelination in the adult mouse spinal cord. In situ hybridization techniques for detecting mRNA for platelet-derived growth factor , receptor (PDGF,R) and proteolipid protein (PLP) were employed to identify glial progenitor cells and mature oligodendrocytes, respectively. During the demyelination stage and early stage of remyelination, large cells strongly expressing PDGF,R mRNA were observed in the border of the demyelinating lesion, and with immunohistochemistry they exhibited positive labeling of the astrocytic marker glial fibrillary acidic protein (GFAP). Other glial progenitor cells expressing PDGF,R mRNA proliferated around the lesion during the demyelination stage. During the remyelination stage, some PDGF,R mRNA-positive cells partly expressed mRNA for PLP in the periphery of the demyelinating lesion. These results suggest that PDGF,R mRNA-positive glial progenitor cells may give rise to both astrocytes and oligodendrocytes, which participate in remyelination following demyelination. [source]


An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration

BIOESSAYS, Issue 6 2009
Judit Ovádi
Abstract TPPP/p25 is a recently discovered, unstructured protein involved in brain function. It is found predominantly in oligodendrocytes in normal brain but is enriched in neuronal and glial inclusions of Parkinson's disease and other synucleinopathies. Its physiological function seems to be the dynamic stabilization of microtubular ultrastructures, as well as the projections of mature oligodendrocytes and ciliary structures. We reappraise the earlier belief that TPPP/p25 is a brain-specific protein. We have identified and cloned two shorter (N-terminal-free) homologs of TPPP/p25 that behave differently from each other and from TPPP/p25. Two unique cell models have been established and used to study the effect of the unstructured protein on the energy metabolism and the formation of pathological aggregates. Our data suggest that the intracellular level of TPPP/p25 influences the cell differentiation, proliferation and the formation of protein aggregates, and consequently, the etiology of central nervous system diseases. [source]