Home About us Contact | |||
Mature Animals (mature + animals)
Selected AbstractsThe relationship of the birth date of rat sympathetic neurons to the target they innervateDEVELOPMENTAL DYNAMICS, Issue 3 2010D. P. Chubb Abstract In many parts of the nervous system, neurons with the same function often have similar "birth dates" (the time their precursor withdrew from the cell cycle). We investigated the birth dates of eight functional classes of rat sympathetic postganglionic neurons by injecting bromodeoxyuridine during embryonic development, while retrograde tracing and immunohistochemistry were used to identify postganglionic neurons of different functional classes in the mature animals. The times of withdrawal from the cell cycle overlapped, but there were significant differences in the peak time of withdrawal for most of the classes. Furthermore, sympathetic cholinergic postganglionic neurons had a significantly greater proportion of their total population labelled with bromodeoxyuridine than did any of the noradrenergic classes of neurons, indicating prenatal class-specific differences in the handling of bromodeoxyuridine. Together, our findings indicate that, prior to extending axons to their targets, different functional classes of sympathetic neurons show differences in phenotype. Developmental Dynamics 239:897,904, 2010. © 2010 Wiley-Liss, Inc. [source] Influence of liver copper status of mare and newborn foal on the development of osteochondrotic lesionsEQUINE VETERINARY JOURNAL, Issue 1 2003P. R. van WEEREN Summary Reason for performing study: To elucidate the highly contentious role of copper in the pathogenesis of osteochondrosis. Hypothesis: There would be no relationship between liver copper concentration of mares and foals and incidence of radiographically detectable osteochondrotic lesions in foals and yearlings was tested. Methods: Liver copper concentration was assessed in biopsies taken within 4 days after birth from both mares and foals and from the same foals at age 5 months. Biopsies were taken in the standing, sedated animal under ultrasonographic guidance. Radiographs were taken of both hocks (lateromedial, dorsoplantar and dorsomedial-plantarolateral oblique views) and stifles (lateromedial and caudolateral-craniomedial oblique views) at ages 5 and 11 months and scored for the presence and severity of osteochondrotic lesions. Results: Copper concentrations in newborn foals were high with a large variation (351 ± 201 mg/kg DM). They declined until reaching values comparable to those in mature animals at 5 months (20 ± 8 mg/kg DM; mares: 19 ± 20 mg/kg DM). Radiographic osteochondrotic lesions decreased in number and severity from 5 to 11 months. This pattern was more predominant in the stifle than in the hock, as has been described previously. Conclusions: There was no relationship between foal or mare liver copper concentration and osteochondrosis status at either 5 or 11 months. However, osteochondrotic lesions in foals with low-level copper status at birth decreased significantly less in number and severity than those in foals with high-level copper status at birth. Potential relevance: It is concluded that copper is not likely to be an important factor in the aetiopathogenesis of osteochondrosis, but this study indicates that there may be a significant effect of high copper status on the natural process of repair of early lesions. [source] Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginataEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005Jeremy M. Sullivan Abstract Life-long neurogenesis is a characteristic feature of the olfactory pathways of a phylogenetically diverse array of animals. In both vertebrates and invertebrates, the life-long addition of olfactory interneurons in the brain occurs in parallel with the continuous proliferation of olfactory receptor neurons in the olfactory organ. It has been proposed that these two processes are related functionally, with new olfactory interneurons being added to accommodate the new olfactory receptor neurons added in the periphery. While this has not been tested directly because the two processes are not readily separable, this question can be addressed in the olfactory pathway of the crab, Libinia emarginata. Unlike most decapod crustaceans, which moult and grow throughout life, L. emarginata has a terminal, maturational moult after which animals become anecdysic (stop moulting). Because the addition of new receptor neurons in crustaceans is associated with moulting, a comparison of neurogenesis in immature and mature L. emarginata provides an opportunity to examine the interdependence of central and peripheral neurogenesis in the olfactory pathway. This study demonstrates that the continuous addition of olfactory receptor neurons in L. emarginata ceases at the terminal moult but that proliferation and differentiation of olfactory interneurons in the brain continues in mature animals. Contrary to the general assumption, therefore, continuous neurogenesis in the central olfactory pathway of this species does not occur as part of a process involving the coregulation of central and peripheral neurogenesis. These findings suggest that peripheral neurogenesis is not a requirement for continuous neurogenesis in the central olfactory pathway. [source] Healing of subfailure ligament injury: comparison between immature and mature ligaments in a rat modelJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2002Paolo P. Provenzano This study evaluated biomechanical properties of healing ligament following subfailure (grade II) injury by comparing young and mature animals in a rat lateral collateral ligament (LCL) model. One randomly selected LCL was stretched in situ using a custom designed device in eighteen young (21 days) and eighteen skeletally mature (8 months) male rats. Animals were euthanized at 0, 7, and 14 days post-surgery, and ligament ultimate stress, strain at failure and laxity were determined (n = 6 pairs per group). At time 0 after introduction of stretch injury, ligament laxity was present in both groups. The mature rats had 54 ± 9% strength of the control while the immature rats had 58 ± 11% of the strength of the control, representing a consistent and significant injury. The immature and mature ligaments showed similar patterns of cellular damage post-injury and had similar modes of mechanical failure. Ligament laxity decreased in each group as healing time increased, however ligament laxity did not completely recover in either group after 2 weeks of healing. After 7 and 14 days of healing, the mature rats, respectively, had only 63 ± 14% and 80 ± 8% strengths of the controls while the immature rats had 94 ± 6% and 94 ± 10%. Hence, mechanical data showed that immature animals recovered their strength after a grade II sprain at a faster rate than mature animals. However, ligament laxity was still present in both groups two weeks after the injury and was not completely removed by growth in the immature group. These findings are clinically relevant since joint laxity after injury is common, and these results may explain the presence of continued instability in a joint injured at a young age. Hence, this study, with a new injury model, showed differences in ligament healing associated with maturity and quantified the clinically observed persistance of ligament laxity. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Pharmacokinetics of flubendazole and its metabolites in lambs and adult sheep (Ovis aries)JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 6 2009Flubendazole (FLU) is indicated for control of helminthoses in pig and avian species (monogastric animals) and its corresponding pharmacokinetics are well known. The information on FLU's pharmacokinetic behavior in animal species with forestomach (ruminants) has been limited although the use of FLU in these species could be beneficial. The aim of this study was to investigate the pharmacokinetics of FLU and its main metabolites in sheep. The effects of animal age (sexually immature and mature ones) and gender were also studied. FLU was orally administered in a single experimental dose (30 mg/kg of body weight) in the form of oral suspension. Treated immature animals (aged 3 months) and 5 months later the same mature individuals (aged 8 months) were kept under the same conditions (food, water and management) and treated with FLU. Within 72 h after FLU administration, plasmatic samples were collected and FLU and its Phase I metabolites were quantified using high-performance liquid chromatography. FLU was detected in very low concentrations only, reduced FLU (FLU-R) was identified as the main metabolite, and hydrolyzed FLU (FLU-H) as the minor one. Formation of FLU-R was stereospecific with (+)-FLU-R domination. The plasmatic concentrations of (+)-FLU-R reached 10,15 times higher values than those of FLU, (,)-FLU-R and FLU-H. A significant gender effect on pharmacokinetics of FLU or (+)-FLU-R metabolite in the mature animals was found and a wide significant difference between lambs and adult sheep in FLU including both metabolites has been proved. [source] Development of layer-specific axonal arborizations in mouse primary somatosensory cortexTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2006DeLaine D. Larsen Abstract In the developing neocortex, pyramidal neurons use molecular cues to form axonal arbors selectively in the correct layers. Despite the utility of mice for molecular and genetic studies, little work has been done on the development of layer-specific axonal arborizations of pyramidal neurons in mice. We intracellularly labeled and reconstructed the axons of layer 2/3 and layer 5 pyramidal neurons in slices of primary somatosensory cortex from C57Bl6 mice on postnatal days 7,21. For all neurons studied, the development of the axonal arborizations in mice follows a pattern similar to that seen in other species; laminar specificity of the earliest axonal branches is similar to that of mature animals. At P7, pyramidal neurons are very simple, having only a main descending axon and few primary branches. Between P7 and P10, there is a large increase in the total number of axonal branches, and axons continue to increase in complexity and total length from P10 to P21. Unlike observations in ferrets, cats, and monkeys, two types of layer 2/3 pyramidal neurons are present in both mature and developing mice; cells in superficial layer 2/3 lack axonal arbors in layer 4, and cells close to the layer 4 border have substantial axonal arbors within layer 4. We also describe axonal and dendritic arborization patterns of three pyramidal cell types in layer 5. The axons of tall-tufted layer 5 pyramidal neurons arborize almost exclusively within deep layers while tall-simple, and short layer 5 pyramidal neurons also project axons to superficial layers. J. Comp. Neurol. 494:398,414, 2006. © 2005 Wiley-Liss, Inc. [source] The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of CajalTHE JOURNAL OF PHYSIOLOGY, Issue 7 2010Rachael R. Roberts In mature animals, neurons and interstitial cells of Cajal (ICC) are essential for organized intestinal motility. We investigated motility patterns, and the roles of neurons and myenteric ICC (ICC-MP), in the duodenum and colon of developing mice in vitro. Spatiotemporal mapping revealed regular contractions that propagated in both directions from embryonic day (E)13.5 in the duodenum and E14.5 in the colon. The propagating contractions, which we termed ripples, were unaffected by tetrodotoxin and were present in the intestine of embryonic Ret null mutant mice, which lack enteric neurons. Neurally mediated motility patterns were first observed in the duodenum at E18.5. To examine the possible role of ICC-MP, three approaches were used. First, intracellular recordings from the circular muscle of the duodenum did not detect slow wave activity at E16.5, but regular slow waves were observed in some preparations of E18.5 duodenum. Second, spatiotemporal mapping revealed ripples in the duodenum of E13.5 and E16.5 W/Wv embryos, which lack KIT+ ICC-MP and slow waves. Third, KIT-immunoreactive cells with the morphology of ICC-MP were first observed at E18.5. Hence, ripples do not appear to be mediated by ICC-MP and must be myogenic. Ripples in the duodenum and colon were abolished by cobalt chloride (1 mm). The L-type Ca2+ channel antagonist nicardipine (2.5 ,m) abolished ripples in the duodenum and reduced their frequency and size in the colon. Our findings demonstrate that prominent propagating contractions (ripples) are present in the duodenum and colon of fetal mice. Ripples are not mediated by neurons or ICC-MP, but entry of extracellular Ca2+ through L-type Ca2+ channels is essential. Thus, during development of the intestine, the first motor patterns to develop are myogenic. [source] Cartilage degradation biomarkers predict efficacy of a novel, highly selective matrix metalloproteinase 13 inhibitor in a dog model of osteoarthritis: Confirmation by multivariate analysis that modulation of type ii collagen and aggrecan degradation peptides parallels pathologic changesARTHRITIS & RHEUMATISM, Issue 10 2010Steven Settle Objective To demonstrate that the novel highly selective matrix metalloproteinase 13 (MMP-13) inhibitor PF152 reduces joint lesions in adult dogs with osteoarthritis (OA) and decreases biomarkers of cartilage degradation. Methods The potency and selectivity of PF152 were evaluated in vitro using 16 MMPs, TACE, and ADAMTS-4 and ADAMTS-5, as well as ex vivo in human cartilage explants. In vivo effects were evaluated at 3 concentrations in mature beagles with partial medial meniscectomy. Gross and histologic changes in the femorotibial joints were evaluated using various measures of cartilage degeneration. Biomarkers of cartilage turnover were examined in serum, urine, or synovial fluid. Results were analyzed individually and in combination using multivariate analysis. Results The potent and selective MMP-13 inhibitor PF152 decreased human cartilage degradation ex vivo in a dose-dependent manner. PF152 treatment of dogs with OA reduced cartilage lesions and decreased biomarkers of type II collagen (type II collagen neoepitope) and aggrecan (peptides ending in ARGN or AGEG) degradation. The dose required for significant inhibition varied with the measure used, but multivariate analysis of 6 gross and histologic measures indicated that all doses differed significantly from vehicle but not from each other. Combined analysis of cartilage degradation markers showed similar results. Conclusion This highly selective MMP-13 inhibitor exhibits chondroprotective effects in mature animals. Biomarkers of cartilage degradation, when evaluated in combination, parallel the joint structural changes induced by the MMP-13 inhibitor. These data support the potential therapeutic value of selective MMP-13 inhibitors and the use of a set of appropriate biomarkers to predict efficacy in OA clinical trials. [source] |